general_chat / main.py
pvanand's picture
Update main.py
a139462 verified
raw
history blame
32.2 kB
from fastapi import FastAPI, HTTPException, Depends, Security, BackgroundTasks
from fastapi.security import APIKeyHeader
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, Field
from typing import Literal, List, Dict
import os
from functools import lru_cache
from openai import OpenAI
from uuid import uuid4
import tiktoken
import sqlite3
import time
from datetime import datetime, timedelta
import asyncio
import requests
from prompts import *
from fastapi_cache import FastAPICache
from fastapi_cache.backends.inmemory import InMemoryBackend
from fastapi_cache.decorator import cache
import logging
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("app.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
app = FastAPI()
API_KEY_NAME = "X-API-Key"
API_KEY = os.environ.get("CHAT_AUTH_KEY", "default_secret_key")
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False)
ModelID = Literal[
"openai/gpt-4o-mini",
"meta-llama/llama-3-70b-instruct",
"anthropic/claude-3.5-sonnet",
"deepseek/deepseek-coder",
"anthropic/claude-3-haiku",
"openai/gpt-3.5-turbo-instruct",
"qwen/qwen-72b-chat",
"google/gemma-2-27b-it"
]
class QueryModel(BaseModel):
user_query: str = Field(..., description="User's coding query")
model_id: ModelID = Field(
default="meta-llama/llama-3-70b-instruct",
description="ID of the model to use for response generation"
)
conversation_id: str = Field(default_factory=lambda: str(uuid4()), description="Unique identifier for the conversation")
user_id: str = Field(..., description="Unique identifier for the user")
class Config:
schema_extra = {
"example": {
"user_query": "How do I implement a binary search in Python?",
"model_id": "meta-llama/llama-3-70b-instruct",
"conversation_id": "123e4567-e89b-12d3-a456-426614174000",
"user_id": "user123"
}
}
class NewsQueryModel(BaseModel):
query: str = Field(..., description="News topic to search for")
model_id: ModelID = Field(
default="openai/gpt-4o-mini",
description="ID of the model to use for response generation"
)
class Config:
schema_extra = {
"example": {
"query": "Latest developments in AI",
"model_id": "openai/gpt-4o-mini"
}
}
@lru_cache()
def get_api_keys():
logger.info("Loading API keys")
return {
"OPENROUTER_API_KEY": f"sk-or-v1-{os.environ['OPENROUTER_API_KEY']}",
"BRAVE_API_KEY": os.environ['BRAVE_API_KEY']
}
api_keys = get_api_keys()
or_client = OpenAI(api_key=api_keys["OPENROUTER_API_KEY"], base_url="https://openrouter.ai/api/v1")
# In-memory storage for conversations
conversations: Dict[str, List[Dict[str, str]]] = {}
last_activity: Dict[str, float] = {}
# Token encoding
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
def limit_tokens(input_string, token_limit=6000):
return encoding.decode(encoding.encode(input_string)[:token_limit])
def calculate_tokens(msgs):
return sum(len(encoding.encode(str(m))) for m in msgs)
def chat_with_llama_stream(messages, model="openai/gpt-4o-mini", max_llm_history=4, max_output_tokens=2500):
logger.info(f"Starting chat with model: {model}")
while calculate_tokens(messages) > (8000 - max_output_tokens):
if len(messages) > max_llm_history:
messages = [messages[0]] + messages[-max_llm_history:]
else:
max_llm_history -= 1
if max_llm_history < 2:
error_message = "Token limit exceeded. Please shorten your input or start a new conversation."
logger.error(error_message)
raise HTTPException(status_code=400, detail=error_message)
try:
response = or_client.chat.completions.create(
model=model,
messages=messages,
max_tokens=max_output_tokens,
stream=True
)
full_response = ""
for chunk in response:
if chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
full_response += content
yield content
# After streaming, add the full response to the conversation history
messages.append({"role": "assistant", "content": full_response})
logger.info("Chat completed successfully")
except Exception as e:
logger.error(f"Error in model response: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error in model response: {str(e)}")
async def verify_api_key(api_key: str = Security(api_key_header)):
if api_key != API_KEY:
logger.warning("Invalid API key used")
raise HTTPException(status_code=403, detail="Could not validate credentials")
return api_key
# SQLite setup
DB_PATH = '/app/data/conversations.db'
def init_db():
logger.info("Initializing database")
os.makedirs(os.path.dirname(DB_PATH), exist_ok=True)
conn = sqlite3.connect(DB_PATH)
c = conn.cursor()
c.execute('''CREATE TABLE IF NOT EXISTS conversations
(id INTEGER PRIMARY KEY AUTOINCREMENT,
user_id TEXT,
conversation_id TEXT,
message TEXT,
response TEXT,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
conn.commit()
conn.close()
logger.info("Database initialized successfully")
init_db()
def update_db(user_id, conversation_id, message, response):
logger.info(f"Updating database for conversation: {conversation_id}")
conn = sqlite3.connect(DB_PATH)
c = conn.cursor()
c.execute('''INSERT INTO conversations (user_id, conversation_id, message, response)
VALUES (?, ?, ?, ?)''', (user_id, conversation_id, message, response))
conn.commit()
conn.close()
logger.info("Database updated successfully")
async def clear_inactive_conversations():
while True:
current_time = time.time()
inactive_convos = [conv_id for conv_id, last_time in last_activity.items()
if current_time - last_time > 1800] # 30 minutes
for conv_id in inactive_convos:
if conv_id in conversations:
del conversations[conv_id]
if conv_id in last_activity:
del last_activity[conv_id]
await asyncio.sleep(60) # Check every minute
@app.on_event("startup")
async def startup_event():
logger.info("Starting up the application")
FastAPICache.init(InMemoryBackend(), prefix="fastapi-cache")
asyncio.create_task(clear_inactive_conversations())
@app.post("/coding-assistant")
async def coding_assistant(query: QueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
"""
Coding assistant endpoint that provides programming help based on user queries.
Available models:
- meta-llama/llama-3-70b-instruct (default)
- anthropic/claude-3.5-sonnet
- deepseek/deepseek-coder
- anthropic/claude-3-haiku
- openai/gpt-3.5-turbo-instruct
- qwen/qwen-72b-chat
- google/gemma-2-27b-it
- openai/gpt-4o-mini
Requires API Key authentication via X-API-Key header.
"""
logger.info(f"Received coding assistant query: {query.user_query}")
if query.conversation_id not in conversations:
conversations[query.conversation_id] = [
{"role": "system", "content": "You are a helpful assistant proficient in coding tasks. Help the user in understanding and writing code."}
]
conversations[query.conversation_id].append({"role": "user", "content": query.user_query})
last_activity[query.conversation_id] = time.time()
# Limit tokens in the conversation history
limited_conversation = conversations[query.conversation_id]
def process_response():
full_response = ""
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
full_response += content
yield content
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.user_query, full_response)
logger.info(f"Completed coding assistant response for query: {query.user_query}")
return StreamingResponse(process_response(), media_type="text/event-stream")
# New functions for news assistant
def internet_search(query, search_type="web", num_results=20):
logger.info(f"Performing internet search for query: {query}, type: {search_type}")
url = f"https://api.search.brave.com/res/v1/{'web' if search_type == 'web' else 'news'}/search"
headers = {
"Accept": "application/json",
"Accept-Encoding": "gzip",
"X-Subscription-Token": api_keys["BRAVE_API_KEY"]
}
params = {"q": query}
response = requests.get(url, headers=headers, params=params)
if response.status_code != 200:
logger.error(f"Failed to fetch search results. Status code: {response.status_code}")
return []
search_data = response.json()["web"]["results"] if search_type == "web" else response.json()["results"]
processed_results = [
{
"title": item["title"],
"snippet": item["extra_snippets"][0],
"last_updated": item.get("age", ""),
"url":item.get("url", "")
}
for item in search_data
if item.get("extra_snippets")
][:num_results]
logger.info(f"Retrieved {len(processed_results)} search results")
return processed_results
@lru_cache(maxsize=100)
def cached_internet_search(query: str):
logger.info(f"Performing cached internet search for query: {query}")
return internet_search(query, search_type="news")
def analyze_data(query, data_type="news"):
logger.info(f"Analyzing {data_type} for query: {query}")
if data_type == "news":
data = cached_internet_search(query)
prompt_generator = generate_news_prompt
system_prompt = NEWS_ASSISTANT_PROMPT
else:
data = internet_search(query, search_type="web")
prompt_generator = generate_search_prompt
system_prompt = SEARCH_ASSISTANT_PROMPT
if not data:
logger.error(f"Failed to fetch {data_type} data")
return None
prompt = prompt_generator(query, data)
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt}
]
logger.info(f"{data_type.capitalize()} analysis completed")
return messages,data
class QueryModel(BaseModel):
query: str = Field(..., description="Search query")
model_id: ModelID = Field(
default="openai/gpt-4o-mini",
description="ID of the model to use for response generation"
)
class Config:
schema_extra = {
"example": {
"query": "What are the latest advancements in quantum computing?",
"model_id": "meta-llama/llama-3-70b-instruct"
}
}
def search_assistant_api(query, data_type, model="openai/gpt-4o-mini"):
logger.info(f"Received {data_type} assistant query: {query}")
messages, search_data = analyze_data(query, data_type)
if not messages:
logger.error(f"Failed to fetch {data_type} data")
raise HTTPException(status_code=500, detail=f"Failed to fetch {data_type} data")
def process_response():
logger.info(f"Generating response using LLM: {messages}")
full_response = ""
for content in chat_with_llama_stream(messages, model=model):
full_response += content
yield content
logger.info(f"Completed {data_type} assistant response for query: {query}")
logger.info(f"LLM Response: {full_response}")
yield "<json><ref>"+ json.dumps(search_data)+"</ref></json>"
return process_response
def create_streaming_response(generator):
return StreamingResponse(generator(), media_type="text/event-stream")
@app.post("/news-assistant")
async def news_assistant(query: QueryModel, api_key: str = Depends(verify_api_key)):
"""
News assistant endpoint that provides summaries and analysis of recent news based on user queries.
Requires API Key authentication via X-API-Key header.
"""
response_generator = search_assistant_api(query.query, "news", model=query.model_id)
return create_streaming_response(response_generator)
@app.post("/search-assistant")
async def search_assistant(query: QueryModel, api_key: str = Depends(verify_api_key)):
"""
Search assistant endpoint that provides summaries and analysis of web search results based on user queries.
Requires API Key authentication via X-API-Key header.
"""
response_generator = search_assistant_api(query.query, "web", model=query.model_id)
return create_streaming_response(response_generator)
from pydantic import BaseModel, Field
import yaml
import json
from yaml.loader import SafeLoader
class FollowupQueryModel(BaseModel):
query: str = Field(..., description="User's query for the followup agent")
model_id: ModelID = Field(
default="openai/gpt-4o-mini",
description="ID of the model to use for response generation"
)
conversation_id: str = Field(default_factory=lambda: str(uuid4()), description="Unique identifier for the conversation")
user_id: str = Field(..., description="Unique identifier for the user")
tool_call: Literal["web", "news", "auto"] = Field(
default="auto",
description="Type of tool to call (web, news, auto)"
)
class Config:
schema_extra = {
"example": {
"query": "How can I improve my productivity?",
"model_id": "openai/gpt-4o-mini",
"conversation_id": "123e4567-e89b-12d3-a456-426614174000",
"user_id": "user123",
"tool_call": "auto"
}
}
import re
def parse_followup_and_tools(input_text):
# Remove extra brackets and excess quotes
cleaned_text = re.sub(r'\[|\]|"+', ' ', input_text)
# Extract response content
response_pattern = re.compile(r'<response>(.*?)</response>', re.DOTALL)
response_parts = response_pattern.findall(cleaned_text)
combined_response = ' '.join(response_parts)
# Normalize spaces in the combined response
combined_response = ' '.join(combined_response.split())
parsed_interacts = []
parsed_tools = []
# Parse interacts and tools
blocks = re.finditer(r'<(interact|tools?)(.*?)>(.*?)</\1>', cleaned_text, re.DOTALL)
for block in blocks:
block_type, _, content = block.groups()
content = content.strip()
if block_type == 'interact':
question_blocks = re.split(r'\s*-\s*text:', content)[1:]
for qblock in question_blocks:
parts = re.split(r'\s*options:\s*', qblock, maxsplit=1)
if len(parts) == 2:
question = ' '.join(parts[0].split()) # Normalize spaces
options = [' '.join(opt.split()) for opt in re.split(r'\s*-\s*', parts[1]) if opt.strip()]
parsed_interacts.append({'question': question, 'options': options})
elif block_type.startswith('tool'): # This will match both 'tool' and 'tools'
tool_match = re.search(r'text:\s*(.*?)\s*options:\s*-\s*(.*)', content, re.DOTALL)
if tool_match:
tool_name = ' '.join(tool_match.group(1).split()) # Normalize spaces
option = ' '.join(tool_match.group(2).split()) # Normalize spaces
parsed_tools.append({'name': tool_name, 'input': option})
return combined_response, parsed_interacts, parsed_tools
@app.post("/followup-agent")
async def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
"""
Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
Requires API Key authentication via X-API-Key header.
"""
logger.info(f"Received followup agent query: {query.query}")
if query.conversation_id not in conversations:
conversations[query.conversation_id] = [
{"role": "system", "content": FOLLOWUP_AGENT_PROMPT}
]
conversations[query.conversation_id].append({"role": "user", "content": query.query})
last_activity[query.conversation_id] = time.time()
# Limit tokens in the conversation history
limited_conversation = conversations[query.conversation_id]
def process_response():
full_response = ""
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
full_response += content
yield content
logger.info(f"LLM RAW response for query: {query.query}: {full_response}")
response_content, interact,tools = parse_followup_and_tools(full_response)
result = {
"response": response_content,
"clarification": interact
}
yield "\n\n" + json.dumps(result)
# Add the assistant's response to the conversation history
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
return StreamingResponse(process_response(), media_type="text/event-stream")
@app.post("/v2/followup-agent")
async def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
"""
Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
Requires API Key authentication via X-API-Key header.
"""
logger.info(f"Received followup agent query: {query.query}")
if query.conversation_id not in conversations:
conversations[query.conversation_id] = [
{"role": "system", "content": FOLLOWUP_AGENT_PROMPT}
]
conversations[query.conversation_id].append({"role": "user", "content": query.query})
last_activity[query.conversation_id] = time.time()
# Limit tokens in the conversation history
limited_conversation = conversations[query.conversation_id]
def process_response():
full_response = ""
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
full_response += content
yield content
logger.info(f"LLM RAW response for query: {query.query}: {full_response}")
response_content, interact,tools = parse_followup_and_tools(full_response)
result = {
"clarification": interact
}
yield "\n<json>"
yield json.dumps(result)
# Add the assistant's response to the conversation history
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
return StreamingResponse(process_response(), media_type="text/event-stream")
@app.post("/v2/followup-tools-agent")
def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
"""
Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
Requires API Key authentication via X-API-Key header.
"""
logger.info(f"Received followup agent query: {query.query}")
if query.conversation_id not in conversations:
conversations[query.conversation_id] = [
{"role": "system", "content": MULTI_AGENT_PROMPT_V2}
]
conversations[query.conversation_id].append({"role": "user", "content": query.query})
last_activity[query.conversation_id] = time.time()
# Limit tokens in the conversation history
limited_conversation = conversations[query.conversation_id]
def process_response():
full_response = ""
result = dict()
# Check if tool_call is specified and call the tool directly
if query.tool_call in ["web", "news"]:
search_query = query.query
search_response = search_assistant_api(search_query, query.tool_call, model=query.model_id)
yield "<report>"
for content in search_response():
yield content
full_response += content
yield "</report>"
else:
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
yield content
full_response += content
logger.info(f"LLM RAW response for query: {query.query}: {full_response}")
response_content, interact, tools = parse_followup_and_tools(full_response)
result = {
"clarification": interact,
"tools": tools
}
yield "<json>"+ json.dumps(result)+"</json>"
# Process tool if present
if tools and len(tools) > 0:
tool = tools[0] # Assume only one tool is present
if tool["name"] in ["news", "web"]:
search_query = tool["input"]
search_response = search_assistant_api(search_query, tool["name"], model=query.model_id)
yield "<report>"
for content in search_response():
yield content
full_response += content
yield "</report>"
# Add the assistant's response to the conversation history
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
logger.info(f"Completed followup agent response for query: {query.query}, send result:{result}, Full response: {full_response}")
return StreamingResponse(process_response(), media_type="text/event-stream")
@app.post("/v3/followup-agent")
async def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
"""
Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
Requires API Key authentication via X-API-Key header.
"""
logger.info(f"Received followup agent query: {query.query}")
if query.conversation_id not in conversations:
conversations[query.conversation_id] = [
{"role": "system", "content": FOLLOWUP_AGENT_PROMPT}
]
conversations[query.conversation_id].append({"role": "user", "content": query.query})
last_activity[query.conversation_id] = time.time()
# Limit tokens in the conversation history
limited_conversation = conversations[query.conversation_id]
async def process_response():
yield "<followup-response>\n\n"
full_response = ""
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
full_response += content
yield content
yield "</followup-response>\n\n"
logger.info(f"LLM RAW response for query: {query.query}: {full_response}")
# Add a slight delay after sending the full LLM response
await asyncio.sleep(0.01)
response_content, interact, tools = parse_followup_and_tools(full_response)
result = {
"clarification": interact
}
yield "<followup-json>\n\n"
yield json.dumps(result) + "\n\n"
yield "</followup-json>\n\n"
# Add the assistant's response to the conversation history
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
return StreamingResponse(process_response(), media_type="text/event-stream")
@app.post("/v4/followup-agent")
async def followup_agent_v4(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
"""
Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
Requires API Key authentication via X-API-Key header.
"""
logger.info(f"Received followup agent query: {query.query}")
if query.conversation_id not in conversations:
conversations[query.conversation_id] = [
{"role": "system", "content": FOLLOWUP_AGENT_PROMPT}
]
conversations[query.conversation_id].append({"role": "user", "content": query.query})
last_activity[query.conversation_id] = time.time()
# Limit tokens in the conversation history
limited_conversation = conversations[query.conversation_id]
async def process_response():
yield "<followup-response>"+"\n"
full_response = ""
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
full_response += content
yield content
yield "</followup-response>"+"\n"
yield "--END_SECTION--\n"
logger.info(f"LLM RAW response for query: {query.query}: {full_response}")
response_content, interact, tools = parse_followup_and_tools(full_response)
result = {
"clarification": interact
}
yield "<followup-json>" + "\n"
yield json.dumps(result) + "\n"
yield "</followup-json>" +"\n"
yield "--END_SECTION--\n"
# Add the assistant's response to the conversation history
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
return StreamingResponse(process_response(), media_type="text/event-stream")
## Digiyatra
@app.post("/digiyatra-followup")
async def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
"""
Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
Requires API Key authentication via X-API-Key header.
"""
logger.info(f"Received followup agent query: {query.query}")
if query.conversation_id not in conversations:
conversations[query.conversation_id] = [
{"role": "system", "content": FOLLOWUP_DIGIYATRA_PROMPT}
]
conversations[query.conversation_id].append({"role": "user", "content": query.query})
last_activity[query.conversation_id] = time.time()
# Limit tokens in the conversation history
limited_conversation = conversations[query.conversation_id]
def process_response():
full_response = ""
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
full_response += content
yield content
logger.info(f"LLM RAW response for query: {query.query}: {full_response}")
response_content, interact,tools = parse_followup_and_tools(full_response)
result = {
"response": response_content,
"clarification": interact
}
yield "\n\n" + json.dumps(result)
# Add the assistant's response to the conversation history
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
return StreamingResponse(process_response(), media_type="text/event-stream")
@app.post("/v2/digiyatra-followup")
async def digi_followup_agent_v2(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
"""
Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
Requires API Key authentication via X-API-Key header.
"""
logger.info(f"Received followup agent query: {query.query}")
if query.conversation_id not in conversations:
conversations[query.conversation_id] = [
{"role": "system", "content": FOLLOWUP_DIGIYATRA_PROMPT}
]
conversations[query.conversation_id].append({"role": "user", "content": query.query})
last_activity[query.conversation_id] = time.time()
# Limit tokens in the conversation history
limited_conversation = conversations[query.conversation_id]
def process_response():
full_response = ""
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
full_response += content
yield json.dumps({"type": "response","content": content}) + "\n"
logger.info(f"LLM RAW response for query: {query.query}: {full_response}")
response_content, interact,tools = parse_followup_and_tools(full_response)
result = {
"response": response_content,
"clarification": interact
}
yield json.dumps({"type": "interact","content": result}) +"\n"
# Add the assistant's response to the conversation history
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
return StreamingResponse(process_response(), media_type="text/event-stream")
from document_generator import router as document_generator_router
app.include_router(document_generator_router, prefix="/api/v1")
from document_generator_v2 import router as document_generator_router_v2
app.include_router(document_generator_router_v2, prefix="/api/v2")
from fastapi.middleware.cors import CORSMiddleware
# CORS middleware setup
app.add_middleware(
CORSMiddleware,
allow_origins=[
"http://127.0.0.1:5501/",
"http://localhost:3000",
"https://www.elevaticsai.com",
"https://www.elevatics.cloud",
"https://www.elevatics.online",
"https://www.elevatics.ai",
"https://elevaticsai.com",
"https://elevatics.cloud",
"https://elevatics.online",
"https://elevatics.ai",
"https://pvanand-specialized-agents.hf.space",
"https://pvanand-general-chat.hf.space"
],
allow_credentials=True,
allow_methods=["GET", "POST"],
allow_headers=["*"],
expose_headers=["Content-Disposition"]
)
if __name__ == "__main__":
import uvicorn
logger.info("Starting the application")
uvicorn.run(app, host="0.0.0.0", port=7860)