File size: 9,862 Bytes
5d42805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import uuid
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from langchain_core.messages import (
    BaseMessage,
    HumanMessage,
    trim_messages,
)
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
from langgraph.checkpoint.memory import MemorySaver
from langgraph.prebuilt import create_react_agent
from pydantic import BaseModel
import json
from typing import Optional, Annotated
from langchain_core.runnables import RunnableConfig
from langgraph.prebuilt import InjectedState
from document_rag_router import router as document_rag_router
from document_rag_router import QueryInput, query_collection, SearchResult
from fastapi import HTTPException
import requests
from sse_starlette.sse import EventSourceResponse
from fastapi.middleware.cors import CORSMiddleware
import re

app = FastAPI()
app.include_router(document_rag_router) 

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@tool
def get_user_age(name: str) -> str:
    """Use this tool to find the user's age."""
    if "bob" in name.lower():
        return "42 years old"
    return "41 years old"

@tool
async def query_documents(
    query: str,
    config: RunnableConfig,
    #state: Annotated[dict, InjectedState]
) -> str:
    """Use this tool to retrieve relevant data from the collection.
    
    Args:
        query: The search query to find relevant document passages
    """
    # Get collection_id and user_id from config
    thread_config = config.get("configurable", {})
    collection_id = thread_config.get("collection_id")
    user_id = thread_config.get("user_id")
    
    if not collection_id or not user_id:
        return "Error: collection_id and user_id are required in the config"
    try:    
        # Create query input
        input_data = QueryInput(
            collection_id=collection_id,
            query=query,
            user_id=user_id,
            top_k=6
        )
        
        response = await query_collection(input_data)
        results = []
        
        # Access response directly since it's a Pydantic model
        for r in response.results:
            result_dict = {
                "text": r.text,
                "distance": r.distance,
                "metadata": {
                    "document_id": r.metadata.get("document_id"),
                    "chunk_index": r.metadata.get("location", {}).get("chunk_index")
                }
            }
            results.append(result_dict)
        
        return str(results)
    
    except Exception as e:
        print(e)
        return f"Error querying documents: {e} PAUSE AND ASK USER FOR HELP"


async def query_documents_raw(
    query: str,
    config: RunnableConfig,
    #state: Annotated[dict, InjectedState]
) -> SearchResult:
    """Use this tool to retrieve relevant data from the collection.
    
    Args:
        query: The search query to find relevant document passages
    """
    # Get collection_id and user_id from config
    thread_config = config.get("configurable", {})
    collection_id = thread_config.get("collection_id")
    user_id = thread_config.get("user_id")
    
    if not collection_id or not user_id:
        return "Error: collection_id and user_id are required in the config"
    try:    
        # Create query input
        input_data = QueryInput(
            collection_id=collection_id,
            query=query,
            user_id=user_id,
            top_k=6
        )
        
        response = await query_collection(input_data)
        return response.results
    
    except Exception as e:
        print(e)
        return f"Error querying documents: {e} PAUSE AND ASK USER FOR HELP"

memory = MemorySaver()
model = ChatOpenAI(model="gpt-4o-mini", streaming=True)

def state_modifier(state) -> list[BaseMessage]:
    return trim_messages(
        state["messages"],
        token_counter=len,
        max_tokens=16000,
        strategy="last",
        start_on="human",
        include_system=True,
        allow_partial=False,
    )

agent = create_react_agent(
    model,
    tools=[query_documents],
    checkpointer=memory,
    state_modifier=state_modifier,
)

class ChatInput(BaseModel):
    message: str
    thread_id: Optional[str] = None
    collection_id: Optional[str] = None
    user_id: Optional[str] = None

@app.post("/chat")
async def chat(input_data: ChatInput):
    thread_id = input_data.thread_id or str(uuid.uuid4())
    
    config = {
        "configurable": {
            "thread_id": thread_id,
            "collection_id": input_data.collection_id,
            "user_id": input_data.user_id
        }
    }
    
    input_message = HumanMessage(content=input_data.message)
    
    async def generate():
        async for event in agent.astream_events(
            {"messages": [input_message]}, 
            config,
            version="v2"
        ):
            kind = event["event"]
            
            if kind == "on_chat_model_stream":
                content = event["data"]["chunk"].content
                if content:
                    yield f"{json.dumps({'type': 'token', 'content': content})}"

            elif kind == "on_tool_start":
                tool_input = str(event['data'].get('input', ''))
                yield f"{json.dumps({'type': 'tool_start', 'tool': event['name'], 'input': tool_input})}"
            
            elif kind == "on_tool_end":
                tool_output = str(event['data'].get('output', ''))
                yield f"{json.dumps({'type': 'tool_end', 'tool': event['name'], 'output': tool_output})}"
    
    return EventSourceResponse(
        generate(),
        media_type="text/event-stream"
    )

async def clean_tool_input(tool_input: str):
    # Use regex to parse the first key and value
    pattern = r"{\s*'([^']+)':\s*'([^']+)'"
    match = re.search(pattern, tool_input)
    if match:
        key, value = match.groups()
        return {key: value}
    return [tool_input]

async def clean_tool_response(tool_output: str):
    """Clean and extract relevant information from tool response if it contains query_documents."""
    if "query_documents" in tool_output:
        try:
            # First safely evaluate the string as a Python literal
            import ast
            print(tool_output)
            # Extract the list string from the content
            start = tool_output.find("[{")
            end = tool_output.rfind("}]") + 2
            if start >= 0 and end > 0:
                list_str = tool_output[start:end]
                
                # Convert string to Python object using ast.literal_eval
                results = ast.literal_eval(list_str)
                
                # Return only relevant fields
                return [{"text": r["text"], "document_id": r["metadata"]["document_id"]} 
                       for r in results]
                
        except SyntaxError as e:
            print(f"Syntax error in parsing: {e}")
            return f"Error parsing document results: {str(e)}"
        except Exception as e:
            print(f"General error: {e}")
            return f"Error processing results: {str(e)}"
    return tool_output

@app.post("/chat2")
async def chat2(input_data: ChatInput):
    thread_id = input_data.thread_id or str(uuid.uuid4())
    
    config = {
        "configurable": {
            "thread_id": thread_id,
            "collection_id": input_data.collection_id,
            "user_id": input_data.user_id
        }
    }
    
    input_message = HumanMessage(content=input_data.message)
    
    async def generate():
        async for event in agent.astream_events(
            {"messages": [input_message]}, 
            config,
            version="v2"
        ):
            kind = event["event"]
            
            if kind == "on_chat_model_stream":
                content = event["data"]["chunk"].content
                if content:
                    yield f"{json.dumps({'type': 'token', 'content': content})}"

            elif kind == "on_tool_start":
                tool_name = event['name']
                tool_input = event['data'].get('input', '')
                clean_input = await clean_tool_input(str(tool_input))
                yield f"{json.dumps({'type': 'tool_start', 'tool': tool_name, 'inputs': clean_input})}"
            
            elif kind == "on_tool_end":
                if "query_documents" in event['name']:
                    print(event)
                    raw_output = await query_documents_raw(str(event['data'].get('input', '')), config)
                    try:
                        serializable_output = [
                            {
                                "text": result.text,
                                "distance": result.distance,
                                "metadata": result.metadata
                            }
                            for result in raw_output
                        ]
                        yield f"{json.dumps({'type': 'tool_end', 'tool': event['name'], 'output': json.dumps(serializable_output)})}"
                    except Exception as e:
                        print(e)
                        yield f"{json.dumps({'type': 'tool_end', 'tool': event['name'], 'output': str(raw_output)})}"
                else:
                    tool_name = event['name']
                    raw_output = str(event['data'].get('output', ''))
                    clean_output = await clean_tool_response(raw_output)
                    yield f"{json.dumps({'type': 'tool_end', 'tool': tool_name, 'output': clean_output})}"
    
    return EventSourceResponse(
        generate(),
        media_type="text/event-stream"
    )

@app.get("/health")
async def health_check():
    return {"status": "healthy"}