Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from functools import partial | |
class LayerNorm2d(nn.LayerNorm): | |
""" LayerNorm for channels of '2D' spatial NCHW tensors """ | |
def __init__(self, num_channels, eps=1e-6, affine=True): | |
super().__init__(num_channels, eps=eps, elementwise_affine=affine) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
# https://pytorch.org/vision/0.12/_modules/torchvision/models/convnext.html | |
x = x.permute(0, 2, 3, 1) | |
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) | |
x = x.permute(0, 3, 1, 2) | |
return x | |
def get_norm(norm_type, channels): | |
if norm_type == "instance": | |
return nn.InstanceNorm2d(channels) | |
elif norm_type == "layer": | |
# return LayerNorm2d | |
return nn.GroupNorm(num_groups=1, num_channels=channels, affine=True) | |
# return partial(nn.GroupNorm, 1, out_ch, 1e-5, True) | |
else: | |
raise ValueError(norm_type) | |