import torch import torch.nn as nn import torch.nn.functional as F from functools import partial class LayerNorm2d(nn.LayerNorm): """ LayerNorm for channels of '2D' spatial NCHW tensors """ def __init__(self, num_channels, eps=1e-6, affine=True): super().__init__(num_channels, eps=eps, elementwise_affine=affine) def forward(self, x: torch.Tensor) -> torch.Tensor: # https://pytorch.org/vision/0.12/_modules/torchvision/models/convnext.html x = x.permute(0, 2, 3, 1) x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) x = x.permute(0, 3, 1, 2) return x def get_norm(norm_type, channels): if norm_type == "instance": return nn.InstanceNorm2d(channels) elif norm_type == "layer": # return LayerNorm2d return nn.GroupNorm(num_groups=1, num_channels=channels, affine=True) # return partial(nn.GroupNorm, 1, out_ch, 1e-5, True) else: raise ValueError(norm_type)