Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 17,666 Bytes
1d3a103 73feb19 1d3a103 5f2c216 565eabb 87e5c9c b8e1b99 0f39362 665f924 87e5c9c b8e1b99 73feb19 b8e1b99 bd3ba15 b8e1b99 87e5c9c b8e1b99 87e5c9c 5f2c216 87e5c9c b8e1b99 87e5c9c c430753 87e5c9c 9d26661 e9ed1f2 87e5c9c b8e1b99 1d3a103 b8e1b99 73feb19 b8e1b99 1d3a103 b8e1b99 8312087 565eabb 8312087 b8e1b99 87e5c9c b8e1b99 3927544 0bd3372 87e5c9c b8e1b99 87e5c9c 0bd3372 73feb19 0bd3372 73feb19 87e5c9c 73feb19 87e5c9c 3927544 87e5c9c 665f924 c13ffb4 665f924 7452863 665f924 87e5c9c 3ddba7d 839eda3 3ddba7d 50d040d 3ddba7d 50d040d 3ddba7d 50d040d d717178 50d040d b8e1b99 87e5c9c 15c9486 87e5c9c 1d3a103 87e5c9c c430753 87e5c9c 1d3a103 87e5c9c 1d3a103 87e5c9c c13ffb4 87e5c9c 34de38e 03e9034 73feb19 34de38e c430753 87e5c9c 3927544 1d3a103 87e5c9c 1d3a103 87e5c9c 716199b 5f2c216 87e5c9c 5f2c216 73feb19 5f2c216 87e5c9c 1d3a103 87e5c9c 1d3a103 87e5c9c 1d3a103 87e5c9c bd3ba15 87e5c9c bd3ba15 73feb19 5f2c216 1d3a103 5f2c216 bd3ba15 73feb19 5f2c216 73feb19 5f2c216 87e5c9c bd3ba15 5f2c216 87e5c9c bd3ba15 5f2c216 87e5c9c bd3ba15 73feb19 0f39362 87e5c9c 5f2c216 87e5c9c 4874c8d 87e5c9c 4874c8d 87e5c9c ba90de1 b8e1b99 3927544 72c7da5 3927544 ba90de1 1413bdf 55b49e6 1413bdf 0f39362 7452863 73feb19 7452863 0f39362 6a1173d 87e5c9c 4874c8d 87e5c9c c430753 4874c8d 895976b 15c9486 4874c8d 15c9486 6a1173d 15c9486 34de38e 4874c8d 22fd690 c13ffb4 4874c8d ba90de1 3927544 c13ffb4 bd3ba15 c13ffb4 93c91df c13ffb4 93c91df c13ffb4 87e5c9c ba90de1 3927544 c13ffb4 bd3ba15 c13ffb4 87e5c9c b8e1b99 87e5c9c 3927544 87e5c9c 73feb19 87e5c9c b8e1b99 87e5c9c 34de38e 87e5c9c 7e755b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
"""
app.py - the main module for the gradio app
Usage:
python app.py
Environment Variables:
USE_TORCH (str): whether to use torch (1) or not (0)
TOKENIZERS_PARALLELISM (str): whether to use parallelism (true) or not (false)
Optional Environment Variables:
APP_MAX_WORDS (int): the maximum number of words to use for summarization
APP_OCR_MAX_PAGES (int): the maximum number of pages to use for OCR
"""
import contextlib
import gc
import logging
import os
import random
import re
import time
from pathlib import Path
os.environ["USE_TORCH"] = "1"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(name)s - %(message)s",
)
import gradio as gr
import nltk
import torch
from cleantext import clean
from doctr.models import ocr_predictor
from pdf2text import convert_PDF_to_Text
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
from utils import (
load_example_filenames,
saves_summary,
textlist2html,
truncate_word_count,
)
_here = Path(__file__).parent
nltk.download("punkt", force=True, quiet=True)
nltk.download("popular", force=True, quiet=True)
MODEL_OPTIONS = [
"pszemraj/long-t5-tglobal-base-16384-book-summary",
"pszemraj/long-t5-tglobal-base-sci-simplify",
"pszemraj/long-t5-tglobal-base-sci-simplify-elife",
"pszemraj/long-t5-tglobal-base-16384-booksci-summary-v1",
"pszemraj/pegasus-x-large-book-summary",
] # models users can choose from
# if duplicating space,, uncomment this line to adjust the max words
# os.environ["APP_MAX_WORDS"] = str(2048) # set the max words to 2048
# os.environ["APP_OCR_MAX_PAGES"] = str(40) # set the max pages to 40
def predict(
input_text: str,
model_name: str,
token_batch_length: int = 1024,
empty_cache: bool = True,
**settings,
) -> list:
"""
predict - helper fn to support multiple models for summarization at once
:param str input_text: the input text to summarize
:param str model_name: model name to use
:param int token_batch_length: the length of the token batches to use
:param bool empty_cache: whether to empty the cache before loading a new= model
:return: list of dicts with keys "summary" and "score"
"""
if torch.cuda.is_available() and empty_cache:
torch.cuda.empty_cache()
model, tokenizer = load_model_and_tokenizer(model_name)
summaries = summarize_via_tokenbatches(
input_text,
model,
tokenizer,
batch_length=token_batch_length,
**settings,
)
del model
del tokenizer
gc.collect()
return summaries
def proc_submission(
input_text: str,
model_name: str,
num_beams: int,
token_batch_length: int,
length_penalty: float,
repetition_penalty: float,
no_repeat_ngram_size: int,
max_input_length: int = 6144,
):
"""
proc_submission - a helper function for the gradio module to process submissions
Args:
input_text (str): the input text to summarize
model_name (str): the hf model tag of the model to use
num_beams (int): the number of beams to use
token_batch_length (int): the length of the token batches to use
length_penalty (float): the length penalty to use
repetition_penalty (float): the repetition penalty to use
no_repeat_ngram_size (int): the no repeat ngram size to use
max_input_length (int, optional): the maximum input length to use. Defaults to 6144.
Note:
the max_input_length is set to 6144 by default, but can be changed by setting the
environment variable APP_MAX_WORDS to a different value.
Returns:
str in HTML format, string of the summary, str of score
"""
settings = {
"length_penalty": float(length_penalty),
"repetition_penalty": float(repetition_penalty),
"no_repeat_ngram_size": int(no_repeat_ngram_size),
"encoder_no_repeat_ngram_size": 4,
"num_beams": int(num_beams),
"min_length": 4,
"max_length": int(token_batch_length // 4),
"early_stopping": True,
"do_sample": False,
}
max_input_length = int(os.environ.get("APP_MAX_WORDS", max_input_length))
logging.info(f"max_input_length set to: {max_input_length}")
st = time.perf_counter()
history = {}
clean_text = clean(input_text, lower=False)
processed = truncate_word_count(clean_text, max_words=max_input_length)
if processed["was_truncated"]:
tr_in = processed["truncated_text"]
# create elaborate HTML warning
input_wc = re.split(r"\s+", input_text)
msg = f"""
<div style="background-color: #FFA500; color: white; padding: 20px;">
<h3>Warning</h3>
<p>Input text was truncated to {max_input_length} words. That's about {100*max_input_length/len(input_wc):.2f}% of the submission.</p>
</div>
"""
logging.warning(msg)
history["WARNING"] = msg
else:
tr_in = input_text
msg = None
if len(input_text) < 50:
# this is essentially a different case from the above
msg = f"""
<div style="background-color: #880808; color: white; padding: 20px;">
<br>
<img src="https://i.imgflip.com/7kadd9.jpg" alt="no text">
<br>
<h3>Error</h3>
<p>Input text is too short to summarize. Detected {len(input_text)} characters.
Please load text by selecting an example from the dropdown menu or by pasting text into the text box.</p>
</div>
"""
logging.warning(msg)
logging.warning("RETURNING EMPTY STRING")
history["WARNING"] = msg
return msg, "<strong>No summary generated.</strong>", "", []
_summaries = predict(
input_text=tr_in,
model_name=model_name,
token_batch_length=token_batch_length,
**settings,
)
sum_text = [s["summary"][0].strip() + "\n" for s in _summaries]
sum_scores = [
f" - Batch Summary {i}: {round(s['summary_score'],4)}"
for i, s in enumerate(_summaries)
]
full_summary = textlist2html(sum_text)
history["Summary Scores"] = "<br><br>"
scores_out = "\n".join(sum_scores)
rt = round((time.perf_counter() - st) / 60, 2)
logging.info(f"Runtime: {rt} minutes")
html = ""
html += f"<p>Runtime: {rt} minutes with model: {model_name}</p>"
if msg is not None:
html += msg
html += ""
# save to file
settings["model_name"] = model_name
saved_file = saves_summary(summarize_output=_summaries, outpath=None, **settings)
return html, full_summary, scores_out, saved_file
def load_single_example_text(
example_path: str or Path,
max_pages: int = 20,
) -> str:
"""
load_single_example_text - loads a single example text file
:param strorPath example_path: name of the example to load
:param int max_pages: the maximum number of pages to load from a PDF
:return str: the text of the example
"""
global name_to_path
full_ex_path = name_to_path[example_path]
full_ex_path = Path(full_ex_path)
if full_ex_path.suffix in [".txt", ".md"]:
with open(full_ex_path, "r", encoding="utf-8", errors="ignore") as f:
raw_text = f.read()
text = clean(raw_text, lower=False)
elif full_ex_path.suffix == ".pdf":
logging.info(f"Loading PDF file {full_ex_path}")
max_pages = int(os.environ.get("APP_MAX_PAGES", max_pages))
logging.info(f"max_pages set to: {max_pages}")
conversion_stats = convert_PDF_to_Text(
full_ex_path,
ocr_model=ocr_model,
max_pages=max_pages,
)
text = conversion_stats["converted_text"]
else:
logging.error(f"Unknown file type {full_ex_path.suffix}")
text = "ERROR - check example path"
return text
def load_uploaded_file(file_obj, max_pages: int = 20, lower: bool = False) -> str:
"""
load_uploaded_file - loads a file uploaded by the user
:param file_obj (POTENTIALLY list): Gradio file object inside a list
:param int max_pages: the maximum number of pages to load from a PDF
:param bool lower: whether to lowercase the text
:return str: the text of the file
"""
logger = logging.getLogger(__name__)
# check if mysterious file object is a list
if isinstance(file_obj, list):
file_obj = file_obj[0]
file_path = Path(file_obj.name)
try:
logger.info(f"Loading file:\t{file_path}")
if file_path.suffix in [".txt", ".md"]:
with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
raw_text = f.read()
text = clean(raw_text, lower=lower)
elif file_path.suffix == ".pdf":
logger.info(f"loading as PDF file {file_path}")
max_pages = int(os.environ.get("APP_MAX_PAGES", max_pages))
logger.info(f"max_pages set to: {max_pages}")
conversion_stats = convert_PDF_to_Text(
file_path,
ocr_model=ocr_model,
max_pages=max_pages,
)
text = conversion_stats["converted_text"]
else:
logger.error(f"Unknown file type:\t{file_path.suffix}")
text = "ERROR - check file - unknown file type. PDF, TXT, and MD are supported."
return text
except Exception as e:
logger.error(f"Trying to load file:\t{file_path},\nerror:\t{e}")
return "Error: Could not read file. Ensure that it is a valid text file with encoding UTF-8 if text, and a PDF if PDF."
if __name__ == "__main__":
logger = logging.getLogger(__name__)
logger.info("Starting app instance")
logger.info("Loading OCR model")
with contextlib.redirect_stdout(None):
ocr_model = ocr_predictor(
"db_resnet50",
"crnn_mobilenet_v3_large",
pretrained=True,
assume_straight_pages=True,
)
name_to_path = load_example_filenames(_here / "examples")
logger.info(f"Loaded {len(name_to_path)} examples")
demo = gr.Blocks(title="Document Summarization with Long-Document Transformers")
_examples = list(name_to_path.keys())
with demo:
gr.Markdown("# Document Summarization with Long-Document Transformers")
gr.Markdown(
"An example use case for fine-tuned long document transformers. Model(s) are trained on [book summaries](https://huggingface.co/datasets/kmfoda/booksum). Architectures in this demo are [LongT5-base](https://huggingface.co/pszemraj/long-t5-tglobal-base-16384-book-summary) and [Pegasus-X-Large](https://huggingface.co/pszemraj/pegasus-x-large-book-summary)."
)
with gr.Column():
gr.Markdown("## Load Inputs & Select Parameters")
gr.Markdown(
"""Enter/paste text below, or upload a file. Pick a model & adjust params (_optional_), and press **Summarize!**
See [the guide doc](https://gist.github.com/pszemraj/722a7ba443aa3a671b02d87038375519) for details.
"""
)
with gr.Row(variant="compact"):
with gr.Column(scale=0.5, variant="compact"):
model_name = gr.Dropdown(
choices=MODEL_OPTIONS,
value=MODEL_OPTIONS[0],
label="Model Name",
)
num_beams = gr.Radio(
choices=[2, 3, 4],
label="Beam Search: # of Beams",
value=2,
)
load_examples_button = gr.Button(
"Load Example in Dropdown",
)
load_file_button = gr.Button("Load an Uploaded File")
with gr.Column(variant="compact"):
example_name = gr.Dropdown(
_examples,
label="Examples",
value=random.choice(_examples),
)
uploaded_file = gr.File(
label="File Upload",
file_count="single",
file_types=[".txt", ".md", ".pdf"],
type="file",
)
with gr.Row():
input_text = gr.Textbox(
lines=4,
max_lines=12,
label="Input Text (for summarization)",
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
)
gr.Markdown("---")
with gr.Column():
gr.Markdown("## Generate Summary")
gr.Markdown(
"_Summarization should take ~1-2 minutes for most settings, but may extend up to 5-10 minutes in some scenarios._"
)
summarize_button = gr.Button(
"Summarize!",
variant="primary",
)
output_text = gr.HTML("<p><em>Output will appear below:</em></p>")
with gr.Column():
gr.Markdown("#### Results & Scores")
with gr.Row():
with gr.Column(variant="compact"):
gr.Markdown(
"Download the summary as a text file, with parameters and scores."
)
text_file = gr.File(
label="Download as Text File",
file_count="single",
type="file",
interactive=False,
)
with gr.Column(variant="compact"):
gr.Markdown(
"Scores represent the summary quality **roughly** as a measure of the model's 'confidence'. less-negative numbers (closer to 0) are better."
)
summary_scores = gr.Textbox(
label="Summary Scores",
placeholder="Summary scores will appear here",
)
gr.Markdown("#### **Summary Output**")
summary_text = gr.HTML(
label="Summary", value="<i>Summary will appear here!</i>"
)
gr.Markdown("---")
with gr.Column():
gr.Markdown("### Advanced Settings")
gr.Markdown(
"Refer to [the guide doc](https://gist.github.com/pszemraj/722a7ba443aa3a671b02d87038375519) for what these are, and how they impact _quality_ and _speed_."
)
with gr.Row(variant="compact"):
length_penalty = gr.Slider(
minimum=0.5,
maximum=1.0,
label="length penalty",
value=0.7,
step=0.05,
)
token_batch_length = gr.Radio(
choices=[512, 1024, 1536, 2048],
label="token batch length",
value=1536,
)
with gr.Row(variant="compact"):
repetition_penalty = gr.Slider(
minimum=1.0,
maximum=5.0,
label="repetition penalty",
value=1.5,
step=0.1,
)
no_repeat_ngram_size = gr.Radio(
choices=[2, 3, 4],
label="no repeat ngram size",
value=3,
)
with gr.Column():
gr.Markdown("### About")
gr.Markdown(
"- Models are fine-tuned on the [BookSum dataset](https://arxiv.org/abs/2105.08209). The goal was to create a model that generalizes well and is useful for summarizing text in academic and everyday use."
)
gr.Markdown(
"- _Update April 2023:_ Additional models fine-tuned on the [PLOS](https://huggingface.co/datasets/pszemraj/scientific_lay_summarisation-plos-norm) and [ELIFE](https://huggingface.co/datasets/pszemraj/scientific_lay_summarisation-elife-norm) subsets of the [scientific lay summaries](https://arxiv.org/abs/2210.09932) dataset are available (see dropdown at the top)."
)
gr.Markdown(
"Adjust the max input words & max PDF pages for OCR by duplicating this space and [setting the environment variables](https://huggingface.co/docs/hub/spaces-overview#managing-secrets) `APP_MAX_WORDS` and `APP_OCR_MAX_PAGES` to the desired integer values."
)
gr.Markdown("---")
load_examples_button.click(
fn=load_single_example_text, inputs=[example_name], outputs=[input_text]
)
load_file_button.click(
fn=load_uploaded_file, inputs=uploaded_file, outputs=[input_text]
)
summarize_button.click(
fn=proc_submission,
inputs=[
input_text,
model_name,
num_beams,
token_batch_length,
length_penalty,
repetition_penalty,
no_repeat_ngram_size,
],
outputs=[output_text, summary_text, summary_scores, text_file],
)
demo.launch(enable_queue=True)
|