File size: 14,799 Bytes
aff1d7c
0c421ed
d482ffb
aff1d7c
 
aaef04d
3a4f72c
207e6fb
6f02348
bad9b95
aff1d7c
 
 
 
 
 
 
 
 
 
 
 
 
69ce22d
ce39840
aff1d7c
 
 
dfc480a
aff1d7c
3a4f72c
 
 
 
 
 
 
 
 
 
 
 
 
bddb72f
 
 
33fe4d2
 
 
dfc480a
 
5d45828
33fe4d2
dfc480a
 
 
 
33fe4d2
dfc480a
 
 
33fe4d2
 
 
 
 
dfc480a
 
 
33fe4d2
 
dfc480a
 
 
 
 
aff1d7c
33fe4d2
aff1d7c
 
 
 
 
 
 
 
 
 
ce39840
 
aff1d7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d482ffb
aff1d7c
 
 
 
 
 
 
 
 
 
3a4f72c
 
 
 
 
 
 
 
 
 
 
 
 
aff1d7c
3a4f72c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d7dadd
 
ce39840
 
 
 
3a4f72c
 
 
 
 
 
aff1d7c
 
 
 
 
 
 
 
 
 
d482ffb
 
aff1d7c
 
ea7b3db
aff1d7c
ea7b3db
 
 
 
 
aff1d7c
ea7b3db
 
aff1d7c
 
 
 
 
dfc480a
a6c8ce4
 
 
 
 
 
 
 
5d45828
 
27a0b3c
5d45828
ec8ffd1
e142abe
ec8ffd1
 
5d45828
 
 
 
 
 
 
 
 
 
 
 
aff1d7c
 
 
 
 
 
 
 
 
bcfb623
131d087
aff1d7c
5d45828
075b52e
 
 
33fe4d2
715339d
5d45828
715339d
 
 
 
 
 
 
 
 
 
 
ec8ffd1
5d45828
 
 
 
 
 
 
715339d
5d45828
 
715339d
 
 
acdd046
aff1d7c
33fe4d2
bddb72f
 
 
27a0b3c
bddb72f
 
5d45828
27a0b3c
dfc480a
5ce9f2c
dfc480a
5d45828
33fe4d2
 
 
715339d
33fe4d2
d482ffb
aff1d7c
 
 
 
 
 
 
 
 
7198c2a
 
33fe4d2
d362f04
33fe4d2
aff1d7c
d482ffb
 
 
 
 
 
 
d362f04
d482ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import os
import io
import asyncio
import socket
import requests
import sys
import logging
from fastapi import FastAPI, File, UploadFile, Form, BackgroundTasks
from fastapi.responses import FileResponse, StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from PIL import Image
import torch
from diffusers import (
    DiffusionPipeline,
    AutoencoderKL,
    StableDiffusionControlNetPipeline,
    ControlNetModel,
    StableDiffusionLatentUpscalePipeline,
    StableDiffusionImg2ImgPipeline,
    StableDiffusionControlNetImg2ImgPipeline,
    DPMSolverMultistepScheduler,
    EulerDiscreteScheduler
)
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from transformers import AutoFeatureExtractor, CLIPFeatureExtractor
import random
import time
import tempfile
import threading

logger = logging.getLogger(__name__)
# Set the logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
logger.setLevel(logging.DEBUG)
file_handler = logging.FileHandler('inference.log')
stream_handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
# Set the formatter for the stream handler (command line)
stream_handler.setFormatter(formatter)

# Add the file handler and stream handler to the logger
logger.addHandler(file_handler)
logger.addHandler(stream_handler)

next_id = 0
next_id_lock = threading.Lock()

class ImageGenerationQueue:
    def __init__(self):
        self.queue = asyncio.Queue()
        self.queue_size = 0
        self.queue_lock = threading.Lock()
        self.next_id = 0

    def add_task(self, task):
        asyncio.run_coroutine_threadsafe(self._add_task(task), loop=asyncio.get_event_loop())

    async def _add_task(self, task):
        await self.queue.put(task)
        # Update queue size in a thread-safe manner
        with self.queue_lock:
            self.queue_size = self.queue.qsize()

    async def process_queue(self):
        while True:
            task = await self.queue.get()
            await task()
            # Update queue size in a thread-safe manner
            with self.queue_lock:
                self.queue_size = self.queue.qsize()
            self.queue.task_done()

    async def get_total_queue_size(self):
        # Return the queue size in a thread-safe manner
        with self.queue_lock:
            return self.queue_size

app = FastAPI()
queue_manager = ImageGenerationQueue()

BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"

# Initialize both pipelines
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16)
main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
    BASE_MODEL,
    controlnet=controlnet,
    vae=vae,
    safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker"),
    feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"),                                                           
    torch_dtype=torch.float16,
).to("cuda")
image_pipe = StableDiffusionControlNetImg2ImgPipeline(**main_pipe.components)

# Sampler map
SAMPLER_MAP = {
    "DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
    "Euler": lambda config: EulerDiscreteScheduler.from_config(config),
}

def center_crop_resize(img, output_size=(512, 512)):
    width, height = img.size

    # Calculate dimensions to crop to the center
    new_dimension = min(width, height)
    left = (width - new_dimension)/2
    top = (height - new_dimension)/2
    right = (width + new_dimension)/2
    bottom = (height + new_dimension)/2

    # Crop and resize
    img = img.crop((left, top, right, bottom))
    img = img.resize(output_size)

    return img

def common_upscale(samples, width, height, upscale_method, crop=False):
        if crop == "center":
            old_width = samples.shape[3]
            old_height = samples.shape[2]
            old_aspect = old_width / old_height
            new_aspect = width / height
            x = 0
            y = 0
            if old_aspect > new_aspect:
                x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
            elif old_aspect < new_aspect:
                y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
            s = samples[:,:,y:old_height-y,x:old_width-x]
        else:
            s = samples

        return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)

def upscale(samples, upscale_method, scale_by):
        #s = samples.copy()
        width = round(samples["images"].shape[3] * scale_by)
        height = round(samples["images"].shape[2] * scale_by)
        s = common_upscale(samples["images"], width, height, upscale_method, "disabled")
        return (s)

#

def convert_to_pil(base64_image):
    pil_image = processing_utils.decode_base64_to_image(base64_image)
    return pil_image

def convert_to_base64(pil_image):
    base64_image = processing_utils.encode_pil_to_base64(pil_image)
    return base64_image

def inference(
    control_image: Image.Image,
    prompt: str,
    negative_prompt = "sexual content, racism, humans, faces",
    guidance_scale: float = 8.0,
    controlnet_conditioning_scale: float = 1,
    control_guidance_start: float = 1,    
    control_guidance_end: float = 1,
    upscaler_strength: float = 0.5,
    seed: int = -1,
    sampler = "DPM++ Karras SDE",
    #profile: gr.OAuthProfile | None = None,
):

    try:
        # Log input types and values
        logger.debug("Input Types: control_image=%s, prompt=%s, negative_prompt=%s, guidance_scale=%s, controlnet_conditioning_scale=%s, control_guidance_start=%s, control_guidance_end=%s, upscaler_strength=%s, seed=%s, sampler=%s",
                    type(control_image), type(prompt), type(negative_prompt), type(guidance_scale), type(controlnet_conditioning_scale),
                    type(control_guidance_start), type(control_guidance_end), type(upscaler_strength), type(seed), type(sampler))
        logger.debug("Input Values: control_image=%s, prompt=%s, negative_prompt=%s, guidance_scale=%s, controlnet_conditioning_scale=%s, control_guidance_start=%s, control_guidance_end=%s, upscaler_strength=%s, seed=%s, sampler=%s",
                    control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale,
                    control_guidance_start, control_guidance_end, upscaler_strength, seed, sampler)

        start_time = time.time()
        start_time_struct = time.localtime(start_time)
        start_time_formatted = time.strftime("%H:%M:%S", start_time_struct)
        logger.info(f"Inference started at {start_time_formatted}")

        # Rest of your existing code
        control_image_small = center_crop_resize(control_image)
        control_image_large = center_crop_resize(control_image, (1024, 1024))
    
        main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
        my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed
        generator = torch.Generator(device="cuda").manual_seed(my_seed)
        
        out = main_pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            image=control_image_small,
            guidance_scale=float(guidance_scale),
            controlnet_conditioning_scale=float(controlnet_conditioning_scale),
            generator=generator,
            control_guidance_start=float(control_guidance_start),
            control_guidance_end=float(control_guidance_end),
            num_inference_steps=15,
            output_type="latent"
        )
        upscaled_latents = upscale(out, "nearest-exact", 2)
        out_image = image_pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            control_image=control_image_large,        
            image=upscaled_latents,
            guidance_scale=float(guidance_scale),
            generator=generator,
            num_inference_steps=20,
            strength=upscaler_strength,
            control_guidance_start=float(control_guidance_start),
            control_guidance_end=float(control_guidance_end),
            controlnet_conditioning_scale=float(controlnet_conditioning_scale)
        )
        end_time = time.time()
        end_time_struct = time.localtime(end_time)
        end_time_formatted = time.strftime("%H:%M:%S", end_time_struct)
        print(f"Inference ended at {end_time_formatted}, taking {end_time-start_time}s")
        logger.debug("Output Types: generated_image=%s", type(None))
        logger.debug("Content of out_image: %s", out_image)
        logger.debug("Structure of out_image: %s", dir(out_image))
        if not out_image.nsfw_content_detected[0]:
            return out_image["images"][0]
        else:
            print("NSFW detected. Nice try.")
        
    
    except Exception as e:
        # Handle exceptions and log error message
        logger.error("Error occurred during inference: %s", str(e))
        return str(e)
        

def generate_image_from_parameters(prompt, guidance_scale, controlnet_scale, controlnet_end, upscaler_strength, seed, sampler_type, image):
    try:
        # Save the uploaded image to a temporary file
        temp_image_path = f"/tmp/{int(time.time())}_{image.filename}"
        with open(temp_image_path, "wb") as temp_image:
            temp_image.write(image.file.read())

        # Open the uploaded image using PIL
        control_image_path = "scrollwhite.png"
        control_image = Image.open(control_image_path)

        # Call existing inference function with the provided parameters
        generated_image, _, _, _ = inference(control_image, prompt, "", guidance_scale, controlnet_scale, 0, controlnet_end, upscaler_strength, seed, sampler_type)

        # Save the generated image as binary data
        output_image_io = io.BytesIO()
        generated_image.save(output_image_io, format="PNG")
        output_image_io.seek(0)
        output_image_binary = output_image_io.read()

        # Return the generated image binary data
        return output_image_binary

    except Exception as e:
        # Handle exceptions and return an error message if something goes wrong
        return str(e)


app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # You can replace ["*"] with specific origins if needed
    allow_credentials=True,
    allow_methods=["*"],  # Allow all methods
    allow_headers=["*"],  # Allow all headers
)

@app.post("/get_image")
async def get_image(
    job_id: int = Form(...)
):
    image_path = f"/tmp/{job_id}_output.png"
    if os.path.isfile(image_path) is False:
        return None
        
    with open(image_path, "rb") as file:
        generated_image = file.read()

    # Save the generated image as binary data
    output_image_io = io.BytesIO()
    generated_image.save(output_image_io, format="PNG")
    output_image_io.seek(0)
    
    # Return the image as a streaming response
    return StreamingResponse(content=output_image_io, media_type="image/png")
    

@app.post("/generate_image")
async def generate_image(
    prompt: str = Form(...),
    guidance_scale: float = Form(...),
    controlnet_scale: float = Form(...),
    controlnet_end: float = Form(...),
    upscaler_strength: float = Form(...),
    seed: int = Form(...),
    sampler_type: str = Form(...),
    image: UploadFile = File(...),
    background_tasks: BackgroundTasks = BackgroundTasks()
):
    async def generate_image_task(job_id):
        global next_id_lock
        global next_id

        try:
            # Save the uploaded image to a temporary file
            temp_image_path = f"/tmp/{job_id}_{image.filename}"
            with open(temp_image_path, "wb") as temp_image:
                temp_image.write(image.file.read())

            # Open the uploaded image using PIL
            control_image = Image.open(temp_image_path)

            # Call existing inference function with the provided parameters
            generated_image = inference(control_image, prompt, "", guidance_scale, controlnet_scale, 0, controlnet_end, upscaler_strength, seed, sampler_type)
            if generated_image is None:
                return "Failed to generate image"

            output_image_path = f"/tmp/{job_id}_output.png"
            with open(output_image_path, "wb") as output_image:
                output_image.write(generated_image)

            # # Save the generated image as binary data
            # output_image_io = io.BytesIO()
            # generated_image.save(output_image_io, format="PNG")
            # output_image_io.seek(0)
            
            # # Return the image as a streaming response
            # return StreamingResponse(content=output_image_io, media_type="image/png")

        except Exception as e:
            logger.error("Error occurred during image generation: %s", str(e))
            return "Failed to generate image"

    try:
        with next_id_lock:
            id = next_id
            next_id += 1

        background_tasks.add_task(lambda _: generate_image_task(id))
        # queue_manager.add_task(lambda _: generate_image_task(id))
        position_in_queue = queue_manager.queue.qsize()

        # Total queue size is still async
        total_queue_size = await queue_manager.get_total_queue_size()  # Implement this function

        return {"job_id": id, "position_in_queue": position_in_queue, "total_queue_size": total_queue_size}

    except Exception as e:
        logger.error("Error occurred during image generation: %s", str(e))
        return "Failed to add task to the queue"

async def start_fastapi():
    # Get internal IP address
    internal_ip = socket.gethostbyname(socket.gethostname())

    # Get public IP address using a public API (this may not work if you are behind a router/NAT)
    try:
        public_ip = requests.get("http://api.ipify.org").text
    except requests.RequestException:
        public_ip = "Not Available"

    print(f"Internal URL: http://{internal_ip}:7860")
    print(f"Public URL: http://{public_ip}:7860")

    # Start processing the existing image generation queue
    queue_processing_task = asyncio.create_task(queue_manager.process_queue())

    # Run FastAPI using hypercorn
    config = uvicorn.Config(app="app:app", host="0.0.0.0", port=7860, reload=True)
    server = uvicorn.Server(config)
    await server.serve()

# Call the asynchronous function using asyncio.run()
if __name__ == "__main__":
    queue_manager = ImageGenerationQueue()  # Create the queue_manager instance here
    asyncio.run(start_fastapi())