File size: 5,409 Bytes
1874bf4
927b5de
 
 
1874bf4
 
 
 
927b5de
1874bf4
 
927b5de
 
1874bf4
927b5de
 
 
1874bf4
927b5de
1874bf4
 
 
 
 
 
 
927b5de
1874bf4
927b5de
 
 
 
 
1874bf4
 
 
 
 
 
f71aa87
 
 
1874bf4
 
 
 
 
f71aa87
1874bf4
 
 
 
f71aa87
1874bf4
 
 
 
 
 
927b5de
1874bf4
 
 
 
048bd80
927b5de
1874bf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0ab3b9
1874bf4
 
927b5de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1874bf4
 
 
 
 
 
 
 
 
 
 
edc6972
 
927b5de
1874bf4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel, PeftConfig
import torch
import gradio as gr
import json
import os
import shutil
import requests

# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"


# Use model IDs as variables
base_model_id = "tiiuae/falcon-7b-instruct"
model_directory = "Tonic/GaiaMiniMed"

# Instantiate the Tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True, padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'


# Load the GaiaMiniMed model with the specified configuration
# Load the Peft model with a specific configuration
# Specify the configuration class for the model
model_config = AutoConfig.from_pretrained(base_model_id)
# Load the PEFT model with the specified configuration
peft_model = AutoModelForCausalLM.from_pretrained(model_directory, config=model_config)
peft_model = PeftModel.from_pretrained(peft_model, model_directory)



# Class to encapsulate the Falcon chatbot
class FalconChatBot:
    def __init__(self, system_prompt="You are an expert medical analyst:"):
        self.system_prompt = system_prompt

    def process_history(self, history):
        if history is None:
            return []
    
        # Filter out special commands from the history
        filtered_history = []
        for message in history:
            user_message = message["user"]
            assistant_message = message["assistant"]
        # Check if the user_message is not a special command
            if not user_message.startswith("Falcon:"):
                filtered_history.append({"user": user_message, "assistant": assistant_message})
        return filtered_history


    def predict(self, system_prompt, user_message, assistant_message, history, max_length=500):
        # Process the history to remove special commands
        processed_history = self.process_history(history)

        # Combine the user and assistant messages into a conversation
        conversation = f"{system_prompt}\nFalcon: {assistant_message if assistant_message else ''} User: {user_message}\nFalcon:\n"
    
        # Encode the conversation using the tokenizer
        input_ids = tokenizer.encode(conversation, return_tensors="pt", add_special_tokens=False)

        # Generate a response using the Falcon model
        response_text = peft_model.generate(input_ids=input_ids, max_length=max_length, use_cache=True, early_stopping=True, bos_token_id=peft_model.config.bos_token_id, eos_token_id=peft_model.config.eos_token_id, pad_token_id=peft_model.config.eos_token_id, temperature=0.4, do_sample=True)

        # Generate the formatted conversation in Falcon message format
        conversation = f"{system_prompt}\n"
        for message in processed_history:
            user_message = message["user"]
            assistant_message = message["assistant"]
            conversation += f"Falcon:{' ' + assistant_message if assistant_message else ''} User: {user_message}\n Falcon:\n"

        return response_text



# Create the Falcon chatbot instance
falcon_bot = FalconChatBot()

# Define the Gradio interface
title = "👋🏻Welcome to Tonic's 🦅Falcon's Medical👨🏻‍⚕️Expert Chat🚀"
description = "You can use this Space to test out the GaiaMiniMed model [(Tonic/GaiaMiniMed)](https://huggingface.co/Tonic/GaiaMiniMed) or duplicate this Space and use it locally or on 🤗HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)."

examples = [  
    ["Assistant is a public health and medical expert ready to help the user.", [{"user": "Hi there, I have a question!", "assistant": "My name is Gaia, I'm a health and sanitation expert ready to answer your medical questions."}]],  
    ["Assistant is a public health and medical expert ready to help the user.", [{"user": "What is the proper treatment for buccal herpes?", "assistant": None}]]  
]

additional_inputs=[
    gr.Textbox("", label="Optional system prompt"),
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=256,
        minimum=0,
        maximum=3000,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.01,
        maximum=0.99,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    )
]

iface = gr.Interface(
    fn=falcon_bot.predict,
    title=title,
    description=description,
    examples=examples,
    inputs=[
        gr.inputs.Textbox(label="System Prompt", type="text", lines=2),
        gr.inputs.Textbox(label="User Message", type="text", lines=3),
        gr.inputs.Textbox(label="Assistant Message", type="text", lines=2),
    ] + additional_inputs,
    outputs="text",
    theme="ParityError/Anime"
)

# Launch the Gradio interface for the Falcon model
iface.launch()