File size: 1,748 Bytes
b01335d
 
4ffc0ce
8867e8a
4ffc0ce
c30f436
237d9d2
b01335d
237d9d2
21d3f61
237d9d2
 
 
 
 
 
 
 
 
 
 
01d3cc0
b01335d
237d9d2
 
 
d992640
237d9d2
b01335d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr

# Use the base model's ID
base_model_id = "mistralai/Mistral-7B-v0.1"

# Load the fine-tuned model "Tonic/mistralmed"
model = AutoModelForCausalLM.from_pretrained("Tonic/mistralmed")

tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'

class ChatBot:
    def __init__(self):
        self.history = []

    def predict(self, input):
        new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors="pt")
        flat_history = [item for sublist in self.history for item in sublist]
        flat_history_tensor = torch.tensor(flat_history).unsqueeze(dim=0)
        bot_input_ids = torch.cat([flat_history_tensor, new_user_input_ids], dim=-1) if self.history else new_user_input_ids
        chat_history_ids = model.generate(bot_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
        self.history.append(chat_history_ids[:, bot_input_ids.shape[-1]:].tolist()[0])
        response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
        return response

bot = ChatBot()

title = "👋🏻Welcome to Tonic's MistralMed Chat🚀"
description = "You can use this Space to test out the current model (MistralMed) or duplicate this Space and use it for any other model on 🤗HuggingFace. Join me on Discord to build together."
examples = [["What is the boiling point of nitrogen"]]

iface = gr.Interface(
    fn=bot.predict,
    title=title,
    description=description,
    examples=examples,
    inputs="text",
    outputs="text",
    theme="ParityError/Anime"
)

iface.launch()