File size: 1,958 Bytes
bc19da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# %%
from keras.layers import *
from keras.models import *
from tensorflow.keras.models import Model
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.preprocessing import image
import numpy as np 
from tensorflow.keras.applications.resnet50 import preprocess_input
import pickle
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.utils import to_categorical

# %%
model=load_model('model_weights/model_19.h5')

# %%
model_temp=ResNet50(weights='imagenet',input_shape=(224,224,3))

# %%
model_resnet=Model(model_temp.input,model_temp.layers[-2].output)

# %%
def preprocess_img(img):
    img=image.load_img(img,target_size=(224,224))
    img=image.img_to_array(img)
    img=np.expand_dims(img,axis=0)

    img=preprocess_input(img)

    return img

# %%
def encode_image(img):
    img=preprocess_img(img)
    feature_vector=model_resnet.predict(img)
    feature_vector=feature_vector.reshape(1,feature_vector.shape[1])
    # print(feature_vector.shape)
    return feature_vector

# %%
with open('storage/word_to_idx.pkl','rb') as w2i:
    word_to_idx=pickle.load(w2i)
with open('storage/idx_to_word.pkl','rb') as i2w:
    idx_to_word=pickle.load(i2w)

# %%
def predict_caption(photo):
    max_len=35
    in_text = "startseq"
    for i in range(max_len):
        sequence = [word_to_idx[w] for w in in_text.split() if w in word_to_idx]
        sequence = pad_sequences([sequence],maxlen=max_len,padding='post')
        
        ypred = model.predict([photo,sequence])
        ypred = ypred.argmax() #WOrd with max prob always - Greedy Sampling
        word = idx_to_word[ypred]
        in_text += (' ' + word)
        
        if word == "endseq":
            break
    
    final_caption = in_text.split()[1:-1]
    final_caption = ' '.join(final_caption)
    return final_caption

# %%
def caption_this_image(image):
    enc=encode_image(image)
    caption=predict_caption(enc)

    return caption