Spaces:
Running
Running
File size: 23,670 Bytes
0f73e99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 |
#==================================================================================#
# Find Contours from Image and Convert into PDF #
#==================================================================================#
import cv2, os
import numpy as np
from imutils.perspective import four_point_transform
from PIL import Image
from unstructured.partition.pdf import partition_pdf
import json, base64, io
from flask import Flask, render_template, flash, redirect, url_for
from dotenv import load_dotenv
import pytesseract
load_dotenv()
app = Flask(__name__)
app.secret_key = os.getenv("SECRET_KEY")
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
poppler_path=r"C:\poppler-23.11.0\Library\bin"
count = 0
OUTPUT_FOLDER = "OUTPUTS"
# os.makedirs(OUTPUT_FOLDER, exist_ok=True)
IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "SCANNED_IMAGE")
# os.makedirs(IMAGE_FOLDER_PATH, exist_ok=True)
PDF_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "SCANNED_PDF")
# os.makedirs(PDF_FOLDER_PATH, exist_ok=True)
JSON_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "EXTRACTED_JSON")
for path in [OUTPUT_FOLDER, IMAGE_FOLDER_PATH, PDF_FOLDER_PATH, JSON_FOLDER_PATH]:
os.makedirs(path, exist_ok=True)
# --- FUNCTION: Detect document contour ---
def detect_document_contour(image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5, 5), 0)
_, thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
contours, _ = cv2.findContours(thresh, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
contours = sorted(contours, key=cv2.contourArea, reverse=True)
for contour in contours:
area = cv2.contourArea(contour)
if area > 1000:
peri = cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, 0.02 * peri, True)
if len(approx) == 4:
return approx
return None
# --- FUNCTION: Extract images from saved PDF ---
def extract_images_from_pdf(pdf_path, output_json_path):
elements = partition_pdf(
filename=pdf_path,
strategy="hi_res",
extract_image_block_types=["Image"], # or ["Image", "Table"]
extract_image_block_to_payload=True, # Set to True to get base64 in output
)
with open(output_json_path, "w") as f:
json.dump([element.to_dict() for element in elements], f, indent=4)
# Display extracted images
with open(output_json_path, 'r') as file:
file_elements = json.load(file)
for i, element in enumerate(file_elements):
if "image_base64" in element["metadata"]:
image_data = base64.b64decode(element["metadata"]["image_base64"])
image = Image.open(io.BytesIO(image_data))
image.show(title=f"Extracted Image {i+1}")
# --- Route: Home Page ---
@app.route("/")
def index():
return render_template("index.html")
# --- Route: Scan Document ---
@app.route("/scan")
def scan_document():
global count
cap = cv2.VideoCapture(0 + cv2.CAP_DSHOW)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)
scale = 0.5
contour = None
while True:
ret, frame = cap.read()
if not ret:
flash("Camera Error!", "error")
break
frame = cv2.rotate(frame, cv2.ROTATE_180)
display = frame.copy()
contour = detect_document_contour(display)
if contour is not None:
cv2.drawContours(display, [contour], -1, (0, 255, 0), 3)
resized = cv2.resize(display, (int(scale * display.shape[1]), int(scale * display.shape[0])))
cv2.imshow("📷 Scan Document - Press 's' to Save, ESC to Exit", resized)
key = cv2.waitKey(1) & 0xFF
if key == 27: # ESC
break
elif key == ord('s') and contour is not None:
warped = four_point_transform(frame, contour.reshape(4, 2))
image_path = os.path.join(IMAGE_FOLDER_PATH, f"scanned_colored_{count}.jpg")
pdf_path = os.path.join(PDF_FOLDER_PATH, f"scanned_colored_{count}.pdf")
json_path = os.path.join(JSON_FOLDER_PATH, f"scanned_{count}.json")
cv2.imwrite(image_path, warped)
img = Image.open(image_path).convert("RGB")
img.save(pdf_path)
extract_images_from_pdf(pdf_path, json_path)
flash("✅ Document scanned and saved!", "success")
count += 1
break
cap.release()
cv2.destroyAllWindows()
return redirect(url_for("index"))
# --- Run ---
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=False)
# while True:
# ret, frame = cap.read()
# if not ret:
# break
# frame = cv2.rotate(frame, cv2.ROTATE_180)
# display = frame.copy()
# contour = detect_document_contour(display)
# if contour is not None:
# cv2.drawContours(display, [contour], -1, (0, 255, 0), 3)
# cv2.imshow("Document Scanner", cv2.resize(display, (int(scale * display.shape[1]), int(scale * display.shape[0]))))
# key = cv2.waitKey(1) & 0xFF
# if key == 27: # ESC to exit
# break
# elif key == ord('s') and contour is not None:
# warped = four_point_transform(frame, contour.reshape(4, 2))
# image_path = os.path.join(IMAGE_FOLDER_PATH, f"scanned_colored_{count}.jpg")
# pdf_path = os.path.join(PDF_FOLDER_PATH,f"scanned_colored_{count}.pdf")
# # Save the Image
# cv2.imwrite(image_path, warped)
# print(f"[INFO] Saved: {image_path}")
# # Convert to PDF
# img = Image.open(image_path)
# img_rgb = img.convert("RGB")
# img_rgb.save(pdf_path)
# print(f"[INFO] Converted to PDF: {pdf_path}")
# # Extract and show embedded images from PDF
# print(f"[INFO] Extracting embedded images from PDF...")
# # extract_images_from_pdf(pdf_path, JSON_FOLDER_PATH)
# count += 1
# cap.release()
# cv2.destroyAllWindows()
''' Simple version Not a Flask APP '''
# import cv2, os, json, base64, io
# import numpy as np
# from imutils.perspective import four_point_transform
# from PIL import Image
# from unstructured.partition.pdf import partition_pdf
# import pytesseract
# # --- PATH CONFIGURATION ---
# pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
# POPPLER_PATH = r"C:\poppler-23.11.0\Library\bin"
# OUTPUT_FOLDER = "OUTPUTS"
# IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "SCANNED_IMAGE")
# PDF_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "SCANNED_PDF")
# JSON_OUTPUT_FOLDER = os.path.join(OUTPUT_FOLDER, "EXTRACTED_JSON")
# for path in [OUTPUT_FOLDER, IMAGE_FOLDER_PATH, PDF_FOLDER_PATH, JSON_OUTPUT_FOLDER]:
# os.makedirs(path, exist_ok=True)
# # --- FUNCTION: Detect document contour ---
# def detect_document_contour(image):
# gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# blur = cv2.GaussianBlur(gray, (5, 5), 0)
# _, thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# contours, _ = cv2.findContours(thresh, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# contours = sorted(contours, key=cv2.contourArea, reverse=True)
# for contour in contours:
# area = cv2.contourArea(contour)
# if area > 1000:
# peri = cv2.arcLength(contour, True)
# approx = cv2.approxPolyDP(contour, 0.02 * peri, True)
# if len(approx) == 4:
# return approx
# return None
# # --- FUNCTION: Extract images from saved PDF ---
# def extract_images_from_pdf(pdf_path, output_json_path):
# elements = partition_pdf(
# filename=pdf_path,
# poppler_path=POPPLER_PATH,
# strategy="hi_res",
# extract_image_block_types=["Image"],
# extract_image_block_to_payload=True,
# )
# with open(output_json_path, "w") as f:
# json.dump([element.to_dict() for element in elements], f, indent=4)
# # Display extracted images
# with open(output_json_path, 'r') as file:
# file_elements = json.load(file)
# for i, element in enumerate(file_elements):
# if "image_base64" in element["metadata"]:
# image_data = base64.b64decode(element["metadata"]["image_base64"])
# image = Image.open(io.BytesIO(image_data))
# image.show(title=f"Extracted Image {i+1}")
# # --- WEBCAM SCANNER START ---
# # cap = cv2.VideoCapture(0 + cv2.CAP_DSHOW)
# cap = cv2.VideoCapture("http://100.71.6.36:8080/video")
# cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
# cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)
# scale = 0.5
# count = 0
# while True:
# ret, frame = cap.read()
# if not ret:
# break
# frame = cv2.rotate(frame, cv2.ROTATE_180)
# display = frame.copy()
# contour = detect_document_contour(display)
# if contour is not None:
# cv2.drawContours(display, [contour], -1, (0, 255, 0), 3)
# cv2.imshow("Document Scanner", cv2.resize(display, (int(scale * display.shape[1]), int(scale * display.shape[0]))))
# key = cv2.waitKey(1) & 0xFF
# if key == 27: # ESC to exit
# break
# elif key == ord('s') and contour is not None:
# warped = four_point_transform(frame, contour.reshape(4, 2))
# image_path = os.path.join(IMAGE_FOLDER_PATH, f"scanned_colored_{count}.jpg")
# pdf_path = os.path.join(PDF_FOLDER_PATH, f"scanned_colored_{count}.pdf")
# json_path = os.path.join(JSON_OUTPUT_FOLDER, f"embedded_images_{count}.json")
# # Save Image
# cv2.imwrite(image_path, warped)
# print(f"[INFO] Saved image: {image_path}")
# # Convert to PDF
# img = Image.open(image_path)
# img_rgb = img.convert("RGB")
# img_rgb.save(pdf_path)
# print(f"[INFO] Converted to PDF: {pdf_path}")
# # Extract and show embedded images from PDF
# print(f"[INFO] Extracting embedded images from PDF...")
# extract_images_from_pdf(pdf_path, json_path)
# count += 1
# cap.release()
# cv2.destroyAllWindows()
'''
#==================================================================================#
# Extract Images from PDF #
#==================================================================================#
from unstructured.partition.pdf import partition_pdf
import pytesseract
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
elements = partition_pdf(
filename=r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\page1.pdf",
poppler_path=r"C:\poppler-23.11.0\Library\bin",
strategy="hi_res",
extract_image_block_types=["Image"], # or ["Image", "Table"]
extract_image_block_to_payload=True, # Set to True to get base64 in output
)
import json, base64, io, os
from PIL import Image
# Save JSON output
os.makedirs("output", exist_ok=True)
with open("output/embedded-images-tables.json", "w") as f:
json.dump([element.to_dict() for element in elements], f, indent=4)
def get_image_block_types(input_json_file_path: str):
with open(input_json_file_path, 'r') as file:
file_elements = json.load(file)
for element in file_elements:
if "image_base64" in element["metadata"]:
image_data = base64.b64decode(element["metadata"]["image_base64"])
image = Image.open(io.BytesIO(image_data))
image.show()
# Example usage:
get_image_block_types("output/embedded-images-tables.json")'''
# from unstructured_client import UnstructuredClient
# from unstructured_client.models import operations, shared
# from unstructured.staging.base import elements_from_dicts, elements_to_json
# import os
# import base64
# from PIL import Image
# import io
# if __name__ == "__main__":
# client = UnstructuredClient(
# api_key_auth=os.getenv("UNSTRUCTURED_API_KEY")
# )
# # Path to your PDF file
# local_input_filepath = "your-pdf-file.pdf"
# local_output_filepath = "output.json"
# with open(local_input_filepath, "rb") as f:
# files = shared.Files(
# content=f.read(),
# file_name=local_input_filepath
# )
# request = operations.PartitionRequest(
# shared.PartitionParameters(
# files=files,
# split_pdf_page=True,
# split_pdf_allow_failed=True,
# split_pdf_concurrency_level=15,
# # Extract Base64-encoded images and tables
# extract_image_block_types=["Image", "Table"]
# )
# )
# try:
# result = client.general.partition(request=request)
# for element in result.elements:
# if "image_base64" in element["metadata"]:
# # Decode and display the image
# image_data = base64.b64decode(element["metadata"]["image_base64"])
# image = Image.open(io.BytesIO(image_data))
# image.show() # This will open the image
# # Save results as JSON
# dict_elements = elements_from_dicts(element_dicts=result.elements)
# elements_to_json(
# elements=dict_elements,
# indent=2,
# filename=local_output_filepath
# )
# except Exception as e:
# print(e)
# -------------------------------------------------------------------------------------- #
# # STEP 1
# # import libraries
# import fitz # PyMuPDF
# import io
# from PIL import Image
# # STEP 2
# # file path you want to extract images from
# file = r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images/page1_orig.pdf"
# # open the file
# pdf_file = fitz.open(file)
# # STEP 3
# # iterate over PDF pages
# for page_index in range(len(pdf_file)):
# # get the page itself
# page = pdf_file.load_page(page_index) # load the page
# image_list = page.get_images(full=True) # get images on the page
# # printing number of images found in this page
# if image_list:
# print(f"[+] Found a total of {len(image_list)} images on page {page_index}")
# else:
# print("[!] No images found on page", page_index)
# for image_index, img in enumerate(image_list, start=1):
# # get the XREF of the image
# xref = img[0]
# # extract the image bytes
# base_image = pdf_file.extract_image(xref)
# image_bytes = base_image["image"]
# # get the image extension
# image_ext = base_image["ext"]
# # save the image
# image_name = f"image{page_index+1}_{image_index}.{image_ext}"
# with open(image_name, "wb") as image_file:
# image_file.write(image_bytes)
# print(f"[+] Image saved as {image_name}")
# -------------------------------------------------------------------------------------- #
# from pdf2image import convert_from_path
# import numpy as np
# import cv2
# def extract_grid_cells_from_pdf(pdf_path, prefix="sub"):
# # Convert PDF's first page to image
# pages = convert_from_path(
# pdf_path,
# dpi=300,
# poppler_path=r"C:\poppler-23.11.0\Library\bin"
# )
# pil = pages[0]
# img = np.array(pil)[:, :, ::-1] # RGB→BGR
# gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# _, thresh = cv2.threshold(gray, 240, 255, cv2.THRESH_BINARY_INV)
# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))
# dil = cv2.dilate(thresh, kernel, iterations=2)
# cnts, _ = cv2.findContours(dil, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# cells = [cv2.boundingRect(c) for c in cnts if cv2.contourArea(c) > 1000]
# cells = sorted(cells, key=lambda r: (r[1], r[0]))
# for i, (x, y, w, h) in enumerate(cells):
# crop = img[y:y+h, x:x+w]
# cv2.imwrite(f"{prefix}_{i:02d}.png", crop)
# print("Saved", f"{prefix}_{i:02d}.png")
# if __name__ == "__main__":
# extract_grid_cells_from_pdf(
# r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\page1_orig.pdf"
# )
# import cv2
# import layoutparser as lp
# from pdf2image import convert_from_path
# from reportlab.pdfgen import canvas
# from reportlab.lib.pagesizes import letter
# import numpy as np
# import tempfile
# import os
# # 1️⃣ Setup LayoutParser model
# model = lp.Detectron2LayoutModel(
# "lp://PrimaLayout/PrimaLayout/mask_rcnn_R_50_FPN_3x/config",
# label_map={0: "Text", 1: "Title", 2: "List", 3: "Table", 4: "Figure"}
# )
# # 2️⃣ Utility to crop and save a layout region
# def crop_and_save(img, block, out_dir, idx):
# x1, y1, x2, y2 = map(int, block.block.x_1_y_2_x_2_y_2)
# cropped = img[y1:y2, x1:x2]
# path = os.path.join(out_dir, f"crop_{idx}.png")
# cv2.imwrite(path, cropped)
# return path
# # 3️⃣ Convert cropped images into multi-page PDF
# def imgs_to_pdf(img_paths, output_pdf):
# c = canvas.Canvas(output_pdf, pagesize=letter)
# w, h = letter
# for img in img_paths:
# c.drawImage(img, 0, 0, width=w, height=h)
# c.showPage()
# c.save()
# # 4️⃣ If user input is a PDF or image folder
# def process_document(pdf_path, output_pdf):
# imgs = convert_from_path(pdf_path)
# cropped_paths = []
# with tempfile.TemporaryDirectory() as tmp:
# for page_idx, pil_im in enumerate(imgs):
# img = cv2.cvtColor(np.array(pil_im), cv2.COLOR_RGB2BGR)
# layout = model.detect(img)
# for idx, block in enumerate(layout):
# path = crop_and_save(img, block, tmp, f"{page_idx}_{idx}")
# cropped_paths.append(path)
# imgs_to_pdf(cropped_paths, output_pdf)
# # 5️⃣ Real-time camera/video feed
# def process_video(output_pdf, src=0, frame_limit=100):
# cap = cv2.VideoCapture(src)
# idx = 0
# cropped_paths = []
# with tempfile.TemporaryDirectory() as tmp:
# while idx < frame_limit:
# ret, img = cap.read()
# if not ret:
# break
# layout = model.detect(img)
# for i, block in enumerate(layout):
# path = crop_and_save(img, block, tmp, f"{idx}_{i}")
# cropped_paths.append(path)
# idx += 1
# cap.release()
# imgs_to_pdf(cropped_paths, output_pdf)
# if __name__ == "__main__":
# import argparse
# ap = argparse.ArgumentParser()
# ap.add_argument("--input", required=True,
# help="path to PDF or 'cam' for camera")
# ap.add_argument("--output", required=True, help="output PDF path")
# ap.add_argument("--frames", type=int, default=50,
# help="frames to scan if using camera")
# args = ap.parse_args()
# if args.input.lower().endswith(".pdf"):
# process_document(args.input, args.output)
# elif args.input.lower() == "cam":
# process_video(args.output, src=0, frame_limit=args.frames)
# else:
# print("Unsupported input. Use PDF path or 'cam'.")
# import cv2
# from PIL import Image
# import numpy as np
# def get_contours(frame):
# gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# # Threshold to binary
# _, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV)
# # Find contours
# contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# return contours
# def extract_regions(frame, contours):
# rois = []
# for cnt in contours:
# x, y, w, h = cv2.boundingRect(cnt)
# if w*h < 1000: # skip small noise
# continue
# roi = frame[y:y+h, x:x+w]
# rois.append(roi)
# return rois
# def save_rois_as_pdf(rois, output_path):
# pil_imgs = []
# for roi in rois:
# rgb = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)
# pil = Image.fromarray(rgb)
# pil_imgs.append(pil)
# if pil_imgs:
# pil_imgs[0].save(output_path, save_all=True, append_images=pil_imgs[1:])
# print(f"Saved {len(pil_imgs)} regions to {output_path}")
# def main():
# cap = cv2.VideoCapture(0)
# all_rois = []
# print("Press 'c' to capture and extract; 'q' to quit.")
# while True:
# ret, frame = cap.read()
# if not ret:
# break
# cv2.imshow("Live Feed", frame)
# key = cv2.waitKey(1) & 0xFF
# if key == ord('c'):
# contours = get_contours(frame)
# rois = extract_regions(frame, contours)
# all_rois.extend(rois)
# print(f"Captured {len(rois)} regions.")
# elif key == ord('q'):
# break
# cap.release()
# cv2.destroyAllWindows()
# if all_rois:
# save_rois_as_pdf(all_rois, "output_contours.pdf")
# else:
# print("No regions captured.")
# if __name__ == "__main__":
# main()
# import cv2
# from PIL import Image
# import numpy as np
# def get_edge_contours(frame, low=50, high=150):
# gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# blurred = cv2.GaussianBlur(gray, (5, 5), 1.0)
# edges = cv2.Canny(blurred, low, high)
# contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# return contours, edges
# def extract_edge_rois(frame, contours, min_area=1000):
# rois = []
# for cnt in contours:
# x, y, w, h = cv2.boundingRect(cnt)
# if w * h < min_area:
# continue
# roi = frame[y:y+h, x:x+w]
# rois.append(roi)
# return rois
# def save_rois_as_pdf(rois, output_path):
# pil_imgs = []
# for roi in rois:
# rgb = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)
# pil_imgs.append(Image.fromarray(rgb))
# if pil_imgs:
# pil_imgs[0].save(output_path, save_all=True, append_images=pil_imgs[1:])
# print(f"✅ Saved {len(pil_imgs)} edge-region(s) to {output_path}")
# else:
# print("⚠️ No edge-based regions detected—PDF not created.")
# def main():
# cap = cv2.VideoCapture(0)
# all_rois = []
# print("Press ‘c’ to capture current edge regions, ‘q’ to quit.")
# while True:
# ret, frame = cap.read()
# if not ret:
# break
# contours, edges = get_edge_contours(frame)
# cv2.imshow("Live Feed", frame)
# cv2.imshow("Edges", edges)
# key = cv2.waitKey(1) & 0xFF
# if key == ord('c'):
# rois = extract_edge_rois(frame, contours)
# all_rois.extend(rois)
# print(f"🔄 Captured {len(rois)} edge-region(s). Total: {len(all_rois)}")
# elif key == ord('q'):
# break
# cap.release()
# cv2.destroyAllWindows()
# if all_rois:
# save_rois_as_pdf(all_rois, "edge_contours.pdf")
# else:
# print("❌ No regions captured.")
# if __name__ == "__main__":
# main()
|