File size: 10,380 Bytes
a45988a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import argparse
import os

import torch
from transformers import T5EncoderModel, T5Tokenizer

from diffusers import AutoencoderKL, DPMSolverMultistepScheduler, PixArtSigmaPipeline, Transformer2DModel


ckpt_id = "PixArt-alpha"
# https://github.com/PixArt-alpha/PixArt-sigma/blob/dd087141864e30ec44f12cb7448dd654be065e88/scripts/inference.py#L158
interpolation_scale = {256: 0.5, 512: 1, 1024: 2, 2048: 4}


def main(args):
    all_state_dict = torch.load(args.orig_ckpt_path)
    state_dict = all_state_dict.pop("state_dict")
    converted_state_dict = {}

    # Patch embeddings.
    converted_state_dict["pos_embed.proj.weight"] = state_dict.pop("x_embedder.proj.weight")
    converted_state_dict["pos_embed.proj.bias"] = state_dict.pop("x_embedder.proj.bias")

    # Caption projection.
    converted_state_dict["caption_projection.linear_1.weight"] = state_dict.pop("y_embedder.y_proj.fc1.weight")
    converted_state_dict["caption_projection.linear_1.bias"] = state_dict.pop("y_embedder.y_proj.fc1.bias")
    converted_state_dict["caption_projection.linear_2.weight"] = state_dict.pop("y_embedder.y_proj.fc2.weight")
    converted_state_dict["caption_projection.linear_2.bias"] = state_dict.pop("y_embedder.y_proj.fc2.bias")

    # AdaLN-single LN
    converted_state_dict["adaln_single.emb.timestep_embedder.linear_1.weight"] = state_dict.pop(
        "t_embedder.mlp.0.weight"
    )
    converted_state_dict["adaln_single.emb.timestep_embedder.linear_1.bias"] = state_dict.pop("t_embedder.mlp.0.bias")
    converted_state_dict["adaln_single.emb.timestep_embedder.linear_2.weight"] = state_dict.pop(
        "t_embedder.mlp.2.weight"
    )
    converted_state_dict["adaln_single.emb.timestep_embedder.linear_2.bias"] = state_dict.pop("t_embedder.mlp.2.bias")

    if args.micro_condition:
        # Resolution.
        converted_state_dict["adaln_single.emb.resolution_embedder.linear_1.weight"] = state_dict.pop(
            "csize_embedder.mlp.0.weight"
        )
        converted_state_dict["adaln_single.emb.resolution_embedder.linear_1.bias"] = state_dict.pop(
            "csize_embedder.mlp.0.bias"
        )
        converted_state_dict["adaln_single.emb.resolution_embedder.linear_2.weight"] = state_dict.pop(
            "csize_embedder.mlp.2.weight"
        )
        converted_state_dict["adaln_single.emb.resolution_embedder.linear_2.bias"] = state_dict.pop(
            "csize_embedder.mlp.2.bias"
        )
        # Aspect ratio.
        converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_1.weight"] = state_dict.pop(
            "ar_embedder.mlp.0.weight"
        )
        converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_1.bias"] = state_dict.pop(
            "ar_embedder.mlp.0.bias"
        )
        converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_2.weight"] = state_dict.pop(
            "ar_embedder.mlp.2.weight"
        )
        converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_2.bias"] = state_dict.pop(
            "ar_embedder.mlp.2.bias"
        )
    # Shared norm.
    converted_state_dict["adaln_single.linear.weight"] = state_dict.pop("t_block.1.weight")
    converted_state_dict["adaln_single.linear.bias"] = state_dict.pop("t_block.1.bias")

    for depth in range(28):
        # Transformer blocks.
        converted_state_dict[f"transformer_blocks.{depth}.scale_shift_table"] = state_dict.pop(
            f"blocks.{depth}.scale_shift_table"
        )
        # Attention is all you need 🤘

        # Self attention.
        q, k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.attn.qkv.weight"), 3, dim=0)
        q_bias, k_bias, v_bias = torch.chunk(state_dict.pop(f"blocks.{depth}.attn.qkv.bias"), 3, dim=0)
        converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q
        converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.bias"] = q_bias
        converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k
        converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.bias"] = k_bias
        converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v
        converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.bias"] = v_bias
        # Projection.
        converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict.pop(
            f"blocks.{depth}.attn.proj.weight"
        )
        converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict.pop(
            f"blocks.{depth}.attn.proj.bias"
        )
        if args.qk_norm:
            converted_state_dict[f"transformer_blocks.{depth}.attn1.q_norm.weight"] = state_dict.pop(
                f"blocks.{depth}.attn.q_norm.weight"
            )
            converted_state_dict[f"transformer_blocks.{depth}.attn1.q_norm.bias"] = state_dict.pop(
                f"blocks.{depth}.attn.q_norm.bias"
            )
            converted_state_dict[f"transformer_blocks.{depth}.attn1.k_norm.weight"] = state_dict.pop(
                f"blocks.{depth}.attn.k_norm.weight"
            )
            converted_state_dict[f"transformer_blocks.{depth}.attn1.k_norm.bias"] = state_dict.pop(
                f"blocks.{depth}.attn.k_norm.bias"
            )

        # Feed-forward.
        converted_state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.weight"] = state_dict.pop(
            f"blocks.{depth}.mlp.fc1.weight"
        )
        converted_state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.bias"] = state_dict.pop(
            f"blocks.{depth}.mlp.fc1.bias"
        )
        converted_state_dict[f"transformer_blocks.{depth}.ff.net.2.weight"] = state_dict.pop(
            f"blocks.{depth}.mlp.fc2.weight"
        )
        converted_state_dict[f"transformer_blocks.{depth}.ff.net.2.bias"] = state_dict.pop(
            f"blocks.{depth}.mlp.fc2.bias"
        )

        # Cross-attention.
        q = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.weight")
        q_bias = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.bias")
        k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.weight"), 2, dim=0)
        k_bias, v_bias = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.bias"), 2, dim=0)

        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.weight"] = q
        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.bias"] = q_bias
        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.weight"] = k
        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.bias"] = k_bias
        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.weight"] = v
        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.bias"] = v_bias

        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.weight"] = state_dict.pop(
            f"blocks.{depth}.cross_attn.proj.weight"
        )
        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.bias"] = state_dict.pop(
            f"blocks.{depth}.cross_attn.proj.bias"
        )

    # Final block.
    converted_state_dict["proj_out.weight"] = state_dict.pop("final_layer.linear.weight")
    converted_state_dict["proj_out.bias"] = state_dict.pop("final_layer.linear.bias")
    converted_state_dict["scale_shift_table"] = state_dict.pop("final_layer.scale_shift_table")

    # PixArt XL/2
    transformer = Transformer2DModel(
        sample_size=args.image_size // 8,
        num_layers=28,
        attention_head_dim=72,
        in_channels=4,
        out_channels=8,
        patch_size=2,
        attention_bias=True,
        num_attention_heads=16,
        cross_attention_dim=1152,
        activation_fn="gelu-approximate",
        num_embeds_ada_norm=1000,
        norm_type="ada_norm_single",
        norm_elementwise_affine=False,
        norm_eps=1e-6,
        caption_channels=4096,
        interpolation_scale=interpolation_scale[args.image_size],
        use_additional_conditions=args.micro_condition,
    )
    transformer.load_state_dict(converted_state_dict, strict=True)

    assert transformer.pos_embed.pos_embed is not None
    try:
        state_dict.pop("y_embedder.y_embedding")
        state_dict.pop("pos_embed")
    except Exception as e:
        print(f"Skipping {str(e)}")
        pass
    assert len(state_dict) == 0, f"State dict is not empty, {state_dict.keys()}"

    num_model_params = sum(p.numel() for p in transformer.parameters())
    print(f"Total number of transformer parameters: {num_model_params}")

    if args.only_transformer:
        transformer.save_pretrained(os.path.join(args.dump_path, "transformer"))
    else:
        # pixart-Sigma vae link: https://huggingface.co/PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers/tree/main/vae
        vae = AutoencoderKL.from_pretrained(f"{ckpt_id}/pixart_sigma_sdxlvae_T5_diffusers", subfolder="vae")

        scheduler = DPMSolverMultistepScheduler()

        tokenizer = T5Tokenizer.from_pretrained(f"{ckpt_id}/pixart_sigma_sdxlvae_T5_diffusers", subfolder="tokenizer")
        text_encoder = T5EncoderModel.from_pretrained(
            f"{ckpt_id}/pixart_sigma_sdxlvae_T5_diffusers", subfolder="text_encoder"
        )

        pipeline = PixArtSigmaPipeline(
            tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, scheduler=scheduler
        )

        pipeline.save_pretrained(args.dump_path)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--micro_condition", action="store_true", help="If use Micro-condition in PixArtMS structure during training."
    )
    parser.add_argument("--qk_norm", action="store_true", help="If use qk norm during training.")
    parser.add_argument(
        "--orig_ckpt_path", default=None, type=str, required=False, help="Path to the checkpoint to convert."
    )
    parser.add_argument(
        "--image_size",
        default=1024,
        type=int,
        choices=[256, 512, 1024, 2048],
        required=False,
        help="Image size of pretrained model, 256, 512, 1024, or 2048.",
    )
    parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.")
    parser.add_argument("--only_transformer", default=True, type=bool, required=True)

    args = parser.parse_args()
    main(args)