File size: 10,575 Bytes
e18c8b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d317a5
e18c8b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import logging
from typing import Dict, List

import streamlit as st
from streamlit_tags import st_tags

from llm_guard.input_scanners import (
    Anonymize,
    BanSubstrings,
    BanTopics,
    Code,
    PromptInjection,
    Secrets,
    Sentiment,
    TokenLimit,
    Toxicity,
)
from llm_guard.input_scanners.anonymize import default_entity_types
from llm_guard.vault import Vault

logger = logging.getLogger("llm-guard-playground")


def init_settings() -> (List, Dict):
    all_scanners = [
        "Anonymize",
        "BanSubstrings",
        "BanTopics",
        "Code",
        "PromptInjection",
        "Secrets",
        "Sentiment",
        "TokenLimit",
        "Toxicity",
    ]

    st_enabled_scanners = st.sidebar.multiselect(
        "Select scanners",
        options=all_scanners,
        default=all_scanners,
        help="The list can be found here: https://laiyer-ai.github.io/llm-guard/input_scanners/anonymize/",
    )

    settings = {}

    if "Anonymize" in st_enabled_scanners:
        st_anon_expander = st.sidebar.expander(
            "Anonymize",
            expanded=False,
        )

        with st_anon_expander:
            st_anon_entity_types = st_tags(
                label="Anonymize entities",
                text="Type and press enter",
                value=default_entity_types,
                suggestions=default_entity_types
                + ["DATE_TIME", "NRP", "LOCATION", "MEDICAL_LICENSE", "US_PASSPORT"],
                maxtags=30,
                key="anon_entity_types",
            )
            st.caption(
                "Check all supported entities: https://microsoft.github.io/presidio/supported_entities/#list-of-supported-entities"
            )
            st_anon_hidden_names = st_tags(
                label="Hidden names to be anonymized",
                text="Type and press enter",
                value=[],
                suggestions=[],
                maxtags=30,
                key="anon_hidden_names",
            )
            st.caption("These names will be hidden e.g. [REDACTED_CUSTOM1].")
            st_anon_allowed_names = st_tags(
                label="Allowed names to ignore",
                text="Type and press enter",
                value=[],
                suggestions=[],
                maxtags=30,
                key="anon_allowed_names",
            )
            st.caption("These names will be ignored even if flagged by the detector.")
            st_anon_preamble = st.text_input(
                "Preamble", value="Text to prepend to sanitized prompt: "
            )
            st_anon_use_faker = st.checkbox(
                "Use Faker", value=False, help="Use Faker library to generate fake data"
            )

        settings["Anonymize"] = {
            "entity_types": st_anon_entity_types,
            "hidden_names": st_anon_hidden_names,
            "allowed_names": st_anon_allowed_names,
            "preamble": st_anon_preamble,
            "use_faker": st_anon_use_faker,
        }

    if "BanSubstrings" in st_enabled_scanners:
        st_bs_expander = st.sidebar.expander(
            "Ban Substrings",
            expanded=False,
        )

        with st_bs_expander:
            st_bs_substrings = st.text_area(
                "Enter substrings to ban (one per line)",
                value="test\nhello\nworld",
                height=200,
            ).split("\n")

            st_bs_match_type = st.selectbox("Match type", ["str", "word"])
            st_bs_case_sensitive = st.checkbox("Case sensitive", value=False)

        settings["BanSubstrings"] = {
            "substrings": st_bs_substrings,
            "match_type": st_bs_match_type,
            "case_sensitive": st_bs_case_sensitive,
        }

    if "BanTopics" in st_enabled_scanners:
        st_bt_expander = st.sidebar.expander(
            "Ban Topics",
            expanded=False,
        )

        with st_bt_expander:
            st_bt_topics = st_tags(
                label="List of topics",
                text="Type and press enter",
                value=["politics", "religion", "money", "crime"],
                suggestions=[],
                maxtags=30,
                key="bt_topics",
            )

            st_bt_threshold = st.slider(
                label="Threshold",
                value=0.75,
                min_value=0.0,
                max_value=1.0,
                step=0.05,
                key="ban_topics_threshold",
            )

        settings["BanTopics"] = {
            "topics": st_bt_topics,
            "threshold": st_bt_threshold,
        }

    if "Code" in st_enabled_scanners:
        st_cd_expander = st.sidebar.expander(
            "Code",
            expanded=False,
        )

        with st_cd_expander:
            st_cd_languages = st.multiselect(
                "Programming languages",
                ["python", "java", "javascript", "go", "php", "ruby"],
                default=["python"],
            )

            st_cd_mode = st.selectbox("Mode", ["allowed", "denied"], index=0)

        settings["Code"] = {
            "languages": st_cd_languages,
            "mode": st_cd_mode,
        }

    if "PromptInjection" in st_enabled_scanners:
        st_pi_expander = st.sidebar.expander(
            "Prompt Injection",
            expanded=False,
        )

        with st_pi_expander:
            st_pi_threshold = st.slider(
                label="Threshold",
                value=0.75,
                min_value=0.0,
                max_value=1.0,
                step=0.05,
                key="prompt_injection_threshold",
            )

        settings["PromptInjection"] = {
            "threshold": st_pi_threshold,
        }

    if "Secrets" in st_enabled_scanners:
        st_sec_expander = st.sidebar.expander(
            "Secrets",
            expanded=False,
        )

        with st_sec_expander:
            st_sec_redact_mode = st.selectbox("Redact mode", ["all", "partial", "hash"])

        settings["Secrets"] = {
            "redact_mode": st_sec_redact_mode,
        }

    if "Sentiment" in st_enabled_scanners:
        st_sent_expander = st.sidebar.expander(
            "Sentiment",
            expanded=False,
        )

        with st_sent_expander:
            st_sent_threshold = st.slider(
                label="Threshold",
                value=-0.1,
                min_value=-1.0,
                max_value=1.0,
                step=0.1,
                key="sentiment_threshold",
                help="Negative values are negative sentiment, positive values are positive sentiment",
            )

        settings["Sentiment"] = {
            "threshold": st_sent_threshold,
        }

    if "TokenLimit" in st_enabled_scanners:
        st_tl_expander = st.sidebar.expander(
            "Token Limit",
            expanded=False,
        )

        with st_tl_expander:
            st_tl_limit = st.number_input(
                "Limit", value=4096, min_value=0, max_value=10000, step=10
            )
            st_tl_encoding_name = st.selectbox(
                "Encoding name",
                ["cl100k_base", "p50k_base", "r50k_base"],
                index=0,
                help="Read more: https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb",
            )

        settings["TokenLimit"] = {
            "limit": st_tl_limit,
            "encoding_name": st_tl_encoding_name,
        }

    if "Toxicity" in st_enabled_scanners:
        st_tox_expander = st.sidebar.expander(
            "Toxicity",
            expanded=False,
        )

        with st_tox_expander:
            st_tox_threshold = st.slider(
                label="Threshold",
                value=0.75,
                min_value=0.0,
                max_value=1.0,
                step=0.05,
                key="toxicity_threshold",
            )

        settings["Toxicity"] = {
            "threshold": st_tox_threshold,
        }

    return st_enabled_scanners, settings


def get_scanner(scanner_name: str, vault: Vault, settings: Dict):
    logger.debug(f"Initializing {scanner_name} scanner")

    if scanner_name == "Anonymize":
        return Anonymize(
            vault=vault,
            allowed_names=settings["allowed_names"],
            hidden_names=settings["hidden_names"],
            entity_types=settings["entity_types"],
            preamble=settings["preamble"],
            use_faker=settings["use_faker"],
        )

    if scanner_name == "BanSubstrings":
        return BanSubstrings(
            substrings=settings["substrings"],
            match_type=settings["match_type"],
            case_sensitive=settings["case_sensitive"],
        )

    if scanner_name == "BanTopics":
        return BanTopics(topics=settings["topics"], threshold=settings["threshold"])

    if scanner_name == "Code":
        mode = settings["mode"]

        allowed_languages = None
        denied_languages = None
        if mode == "allowed":
            allowed_languages = settings["languages"]
        elif mode == "denied":
            denied_languages = settings["languages"]

        return Code(allowed=allowed_languages, denied=denied_languages)

    if scanner_name == "PromptInjection":
        return PromptInjection(threshold=settings["threshold"])

    if scanner_name == "Secrets":
        return Secrets(redact_mode=settings["redact_mode"])

    if scanner_name == "Sentiment":
        return Sentiment(threshold=settings["threshold"])

    if scanner_name == "TokenLimit":
        return TokenLimit(limit=settings["limit"], encoding_name=settings["encoding_name"])

    if scanner_name == "Toxicity":
        return Toxicity(threshold=settings["threshold"])

    raise ValueError("Unknown scanner name")


def scan(
    vault: Vault, enabled_scanners: List[str], settings: Dict, text: str
) -> (str, Dict[str, bool], Dict[str, float]):
    sanitized_prompt = text
    results_valid = {}
    results_score = {}

    with st.status("Scanning prompt...", expanded=True) as status:
        for scanner_name in enabled_scanners:
            st.write(f"{scanner_name} scanner...")
            scanner = get_scanner(scanner_name, vault, settings[scanner_name])
            sanitized_prompt, is_valid, risk_score = scanner.scan(sanitized_prompt)
            results_valid[scanner_name] = is_valid
            results_score[scanner_name] = risk_score
        status.update(label="Scanning complete", state="complete", expanded=False)

    return sanitized_prompt, results_valid, results_score