File size: 18,032 Bytes
d4390a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fd1ee1
d4390a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
# Fine-tuning Code LLM with CoVe (Chain of Verification) on HuggingFace Spaces
# Implements Chain of Verification for better code reasoning and verification

import os
import torch
import numpy as np
import functools
import random
import json
from tqdm import tqdm
from typing import Dict, List, Any
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    Trainer,
    TrainingArguments,
    logging,
    set_seed,
    BitsAndBytesConfig,
    DataCollatorForLanguageModeling,
)
from datasets import load_dataset, Dataset
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, PeftModel
from torch.utils.data import IterableDataset
from huggingface_hub import HfApi, login

# Login to HuggingFace
if os.getenv("HF_TOKEN"):
    login(token=os.getenv("HF_TOKEN"))

# Model and dataset configuration
MODEL = "codellama/CodeLlama-7b-Instruct-hf"  # Using instruct version for better CoVe performance
# Using multiple datasets for better CoVe training
DATASETS = [
    "smangrul/hf-stack-v1",  # Code repository data
    "iamtarun/python_code_instructions_18k_alpaca",  # Code instructions
    "nickrosh/Evol-Instruct-Code-80k-v1",  # Evolved code instructions
]

# CoVe-specific parameters
COVE_VERIFICATION_RATE = 0.7  # Proportion of samples that get verification steps
COVE_EXPLANATION_RATE = 0.8   # Proportion of samples that get explanations

# Training parameters optimized for CoVe
SEQ_LENGTH = 3072  # Longer sequences for verification chains
MAX_STEPS = 1500
BATCH_SIZE = 2     # Smaller batch for longer sequences
GR_ACC_STEPS = 8   # Higher accumulation
LR = 1e-4
LR_SCHEDULER_TYPE = "cosine"
WEIGHT_DECAY = 0.01
NUM_WARMUP_STEPS = 100
EVAL_FREQ = 150
SAVE_FREQ = 300
LOG_FREQ = 25
OUTPUT_DIR = "codellama-7b-cove-finetuned"
BF16 = True
FP16 = False

# LoRA parameters
LORA_R = 32  # Higher rank for complex reasoning
LORA_ALPHA = 64
LORA_DROPOUT = 0.1
LORA_TARGET_MODULES = "q_proj,v_proj,k_proj,o_proj,gate_proj,up_proj,down_proj"

# Quantization config
USE_NESTED_QUANT = True
BNB_4BIT_COMPUTE_DTYPE = "bfloat16"
SEED = 42

set_seed(SEED)

# CoVe prompt templates
COVE_TEMPLATES = {
    "code_explanation": """<s>[INST] Explain the following code step by step, then verify your explanation:

Code:
{code}

Provide:
1. Step-by-step explanation
2. Verification of each step
3. Final summary [/INST]

## Step-by-step Explanation:
{explanation}

## Verification:
{verification}

## Summary:
{summary}</s>""",

    "code_generation": """<s>[INST] {instruction}

Use Chain of Verification:
1. Generate the solution
2. Verify it works correctly
3. Check for edge cases
4. Provide final verified solution [/INST]

## Initial Solution:
{initial_solution}

## Verification Steps:
{verification_steps}

## Edge Case Analysis:
{edge_cases}

## Final Verified Solution:
{final_solution}</s>""",

    "code_debugging": """<s>[INST] Debug the following code and explain your reasoning:

Code:
{buggy_code}

Problem: {problem_description}

Use verification to ensure your fix is correct. [/INST]

## Problem Analysis:
{analysis}

## Proposed Fix:
{fix}

## Verification:
{verification}

## Final Corrected Code:
{corrected_code}</s>""",

    "code_review": """<s>[INST] Review this code and provide feedback:

{code}

Provide:
1. Initial assessment
2. Verify your observations
3. Specific improvement suggestions [/INST]

## Initial Assessment:
{assessment}

## Verification of Issues:
{verification}

## Improvement Suggestions:
{suggestions}</s>"""
}

class CoVeDataProcessor:
    """Processes various datasets into CoVe format"""
    
    def __init__(self, tokenizer):
        self.tokenizer = tokenizer
        
    def create_code_explanation_sample(self, code_content: str) -> str:
        """Create a CoVe sample with code explanation and verification"""
        # Extract meaningful code blocks (functions, classes)
        lines = code_content.split('\n')
        code_blocks = []
        current_block = []
        indent_level = 0
        
        for line in lines:
            if line.strip():
                if (line.startswith('def ') or line.startswith('class ') or 
                    line.startswith('async def ')):
                    if current_block:
                        code_blocks.append('\n'.join(current_block))
                    current_block = [line]
                    indent_level = len(line) - len(line.lstrip())
                elif current_block:
                    current_block.append(line)
                    # End block if we return to original indent level
                    if line.strip() and (len(line) - len(line.lstrip())) <= indent_level:
                        if len(current_block) > 3:  # Only keep substantial blocks
                            code_blocks.append('\n'.join(current_block))
                        current_block = []
        
        if current_block and len(current_block) > 3:
            code_blocks.append('\n'.join(current_block))
        
        if not code_blocks:
            return None
            
        # Select a random code block
        code_block = random.choice(code_blocks)
        
        # Generate explanation, verification, and summary
        explanation = self._generate_explanation(code_block)
        verification = self._generate_verification(code_block, explanation)
        summary = self._generate_summary(code_block)
        
        return COVE_TEMPLATES["code_explanation"].format(
            code=code_block,
            explanation=explanation,
            verification=verification,
            summary=summary
        )
    
    def _generate_explanation(self, code: str) -> str:
        """Generate step-by-step explanation"""
        lines = [line for line in code.split('\n') if line.strip()]
        explanations = []
        
        for i, line in enumerate(lines[:8]):  # Limit to first 8 lines
            line = line.strip()
            if line.startswith('def '):
                explanations.append(f"Step {i+1}: Define function with parameters")
            elif line.startswith('class '):
                explanations.append(f"Step {i+1}: Define class structure")
            elif 'return' in line:
                explanations.append(f"Step {i+1}: Return computed result")
            elif '=' in line and not line.startswith('if'):
                explanations.append(f"Step {i+1}: Variable assignment and computation")
            elif line.startswith('if '):
                explanations.append(f"Step {i+1}: Conditional logic check")
            elif line.startswith('for ') or line.startswith('while '):
                explanations.append(f"Step {i+1}: Loop iteration")
            else:
                explanations.append(f"Step {i+1}: Execute operation")
        
        return '\n'.join(explanations)
    
    def _generate_verification(self, code: str, explanation: str) -> str:
        """Generate verification steps"""
        verifications = [
            "βœ“ Syntax check: Code follows Python syntax rules",
            "βœ“ Logic check: Each step follows logically from the previous",
            "βœ“ Variable usage: All variables are properly defined before use",
            "βœ“ Return value: Function returns appropriate type and value"
        ]
        
        if 'def ' in code:
            verifications.append("βœ“ Function definition: Parameters and return type are clear")
        if 'for ' in code or 'while ' in code:
            verifications.append("βœ“ Loop logic: Iteration bounds and exit conditions are correct")
        if 'if ' in code:
            verifications.append("βœ“ Conditional logic: All branches are handled appropriately")
            
        return '\n'.join(verifications)
    
    def _generate_summary(self, code: str) -> str:
        """Generate summary of the code"""
        if 'def ' in code:
            return "This function implements a specific algorithm with clear input/output behavior and proper error handling."
        elif 'class ' in code:
            return "This class defines a data structure with methods for manipulation and access."
        else:
            return "This code block performs a specific computational task with clear logic flow."

    def create_instruction_sample(self, instruction: str, code: str) -> str:
        """Create CoVe sample from instruction-code pair"""
        # Generate verification components
        initial_solution = code
        verification_steps = [
            "1. Check syntax correctness",
            "2. Verify logic flow",
            "3. Test with sample inputs",
            "4. Confirm output format"
        ]
        
        edge_cases = [
            "- Empty input handling",
            "- Boundary value testing",
            "- Type validation",
            "- Error condition handling"
        ]
        
        return COVE_TEMPLATES["code_generation"].format(
            instruction=instruction,
            initial_solution=initial_solution,
            verification_steps='\n'.join(verification_steps),
            edge_cases='\n'.join(edge_cases),
            final_solution=code
        )

class CoVeDataset(IterableDataset):
    """Dataset that generates CoVe-formatted training examples"""
    
    def __init__(self, datasets, tokenizer, max_samples=10000, seq_length=3072):
        self.datasets = datasets
        self.tokenizer = tokenizer
        self.max_samples = max_samples
        self.seq_length = seq_length
        self.processor = CoVeDataProcessor(tokenizer)
        self.samples_generated = 0
        
    def __iter__(self):
        for dataset in self.datasets:
            if self.samples_generated >= self.max_samples:
                break
                
            try:
                ds = load_dataset(dataset, streaming=True, split='train')
                
                for example in ds:
                    if self.samples_generated >= self.max_samples:
                        break
                    
                    # Process based on dataset type
                    if 'content' in example:
                        # Repository code
                        cove_sample = self.processor.create_code_explanation_sample(
                            example['content']
                        )
                    elif 'instruction' in example and 'output' in example:
                        # Instruction-following dataset
                        cove_sample = self.processor.create_instruction_sample(
                            example['instruction'], example['output']
                        )
                    else:
                        continue
                    
                    if cove_sample and len(cove_sample) > 100:
                        # Tokenize and create training example
                        tokenized = self.tokenizer(
                            cove_sample,
                            max_length=self.seq_length,
                            truncation=True,
                            padding=False,
                            return_tensors="pt"
                        )
                        
                        if tokenized['input_ids'].shape[1] > 512:  # Ensure substantial content
                            input_ids = tokenized['input_ids'].squeeze()
                            
                            yield {
                                'input_ids': input_ids,
                                'labels': input_ids.clone(),
                                'attention_mask': tokenized['attention_mask'].squeeze()
                            }
                            
                            self.samples_generated += 1
                            
                            if self.samples_generated % 100 == 0:
                                print(f"Generated {self.samples_generated} CoVe samples")
                                
            except Exception as e:
                print(f"Error processing dataset {dataset}: {e}")
                continue

def setup_model_and_tokenizer():
    """Setup quantized model and tokenizer"""
    print(f"Loading model: {MODEL}")
    
    tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    
    # 4-bit quantization config
    compute_dtype = getattr(torch, BNB_4BIT_COMPUTE_DTYPE)
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=compute_dtype,
        bnb_4bit_use_double_quant=USE_NESTED_QUANT,
    )
    
    # Load quantized model
    model = AutoModelForCausalLM.from_pretrained(
        MODEL,
        quantization_config=bnb_config,
        device_map="auto",
        use_cache=False,
        trust_remote_code=True,
        torch_dtype=compute_dtype,
    )
    
    model = prepare_model_for_kbit_training(model)
    return model, tokenizer

def setup_lora(model):
    """Setup LoRA configuration"""
    peft_config = LoraConfig(
        lora_alpha=LORA_ALPHA,
        lora_dropout=LORA_DROPOUT,
        r=LORA_R,
        bias="none",
        task_type="CAUSAL_LM",
        target_modules=LORA_TARGET_MODULES.split(","),
    )
    
    model = get_peft_model(model, peft_config)
    model.print_trainable_parameters()
    return model

def prepare_cove_datasets(tokenizer):
    """Prepare CoVe training datasets"""
    print("Preparing CoVe datasets...")
    
    # Create training dataset
    train_dataset = CoVeDataset(
        DATASETS, 
        tokenizer, 
        max_samples=8000,
        seq_length=SEQ_LENGTH
    )
    
    # Create smaller validation dataset
    eval_dataset = CoVeDataset(
        DATASETS, 
        tokenizer, 
        max_samples=1000,
        seq_length=SEQ_LENGTH
    )
    
    return train_dataset, eval_dataset

def train_cove_model():
    """Main training function for CoVe"""
    print("Setting up model and tokenizer...")
    model, tokenizer = setup_model_and_tokenizer()
    
    print("Setting up LoRA...")
    model = setup_lora(model)
    
    print("Preparing CoVe datasets...")
    train_dataset, eval_dataset = prepare_cove_datasets(tokenizer)
    
    # Data collator for language modeling
    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer,
        mlm=False,
        return_tensors="pt",
        pad_to_multiple_of=8,
    )
    
    # Training arguments
    training_args = TrainingArguments(
        output_dir=OUTPUT_DIR,
        dataloader_drop_last=True,
        eval_strategy="steps",
        save_strategy="steps",
        max_steps=MAX_STEPS,
        eval_steps=EVAL_FREQ,
        save_steps=SAVE_FREQ,
        logging_steps=LOG_FREQ,
        per_device_train_batch_size=BATCH_SIZE,
        per_device_eval_batch_size=BATCH_SIZE,
        learning_rate=LR,
        lr_scheduler_type=LR_SCHEDULER_TYPE,
        warmup_steps=NUM_WARMUP_STEPS,
        gradient_accumulation_steps=GR_ACC_STEPS,
        gradient_checkpointing=True,
        fp16=FP16,
        bf16=BF16,
        weight_decay=WEIGHT_DECAY,
        push_to_hub=True,
        hub_model_id=OUTPUT_DIR,
        hub_strategy="every_save",
        include_tokens_per_second=True,
        remove_unused_columns=False,
        report_to="tensorboard",
        dataloader_num_workers=2,
    )
    
    print("Starting CoVe training...")
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        data_collator=data_collator,
    )
    
    trainer.train()
    trainer.save_model()
    trainer.push_to_hub()
    
    print("CoVe training completed!")
    return model, tokenizer

def test_cove_inference(model_path=None):
    """Test CoVe inference"""
    if model_path is None:
        model_path = OUTPUT_DIR
    
    print("Loading CoVe model for inference...")
    tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True)
    base_model = AutoModelForCausalLM.from_pretrained(
        MODEL,
        quantization_config=None,
        device_map="auto",
        trust_remote_code=True,
        torch_dtype=torch.bfloat16,
    )
    
    model = PeftModel.from_pretrained(base_model, model_path)
    model = model.merge_and_unload()
    
    def generate_with_cove(prompt, max_length=512):
        model.eval()
        inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
        
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_new_tokens=max_length,
                temperature=0.3,
                top_k=50,
                top_p=0.9,
                do_sample=True,
                repetition_penalty=1.1,
                pad_token_id=tokenizer.eos_token_id,
            )
        
        return tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    # Test CoVe reasoning
    test_prompt = """<s>[INST] Explain the following code step by step, then verify your explanation:

Code:
def fibonacci(n):
    if n <= 1:
        return n
    a, b = 0, 1
    for i in range(2, n + 1):
        a, b = b, a + b
    return b

Provide:
1. Step-by-step explanation
2. Verification of each step
3. Final summary [/INST]"""
    
    print("CoVe Test Prompt:")
    print(test_prompt)
    print("\n" + "="*80)
    print("Generated CoVe Response:")
    result = generate_with_cove(test_prompt)
    print(result[len(test_prompt):])

if __name__ == "__main__":
    print("Starting CoVe Fine-tuning Process...")
    
    if os.getenv("SPACE_ID"):
        print("Running in HuggingFace Spaces")
        
    if torch.cuda.is_available():
        print(f"GPU: {torch.cuda.get_device_name(0)}")
        print(f"VRAM: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
    else:
        print("WARNING: No GPU available!")
    
    # Train CoVe model
    model, tokenizer = train_cove_model()
    
    # Test CoVe inference
    print("\n" + "="*80)
    print("Testing CoVe Inference...")
    test_cove_inference()