Spaces:
Running
Running
File size: 5,372 Bytes
51a6af5 0cbd64e 5d72536 0cbd64e 51a6af5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import gradio as gr
import os
import subprocess
import sys
import threading
import time
from pathlib import Path
# Import your training code
from fine_tune_cove import train_cove_model, test_cove_inference
def install_requirements():
"""Install required packages"""
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", "-r", "requirements.txt"])
return "β
Requirements installed successfully!"
except Exception as e:
return f"β Error installing requirements: {str(e)}"
def start_training(hf_token, model_name="codellama/CodeLlama-7b-Instruct-hf"):
"""Start the CoVe training process"""
if not hf_token:
return "β Please provide a HuggingFace token"
# Set environment variables
os.environ["HF_TOKEN"] = hf_token
os.environ["SPACE_ID"] = "1" # Indicates running in Spaces
try:
# Start training in a separate thread
training_thread = threading.Thread(target=train_cove_model)
training_thread.daemon = True
training_thread.start()
return "π Training started! Check the logs below for progress."
except Exception as e:
return f"β Error starting training: {str(e)}"
def get_training_logs():
"""Get training logs"""
log_file = "training.log"
if os.path.exists(log_file):
with open(log_file, 'r') as f:
return f.read()
return "No logs available yet. Training may not have started."
def test_model():
"""Test the trained model"""
try:
result = test_cove_inference()
return result
except Exception as e:
return f"β Error testing model: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="CoVe Fine-tuning on HuggingFace Spaces") as demo:
gr.Markdown("# π Chain of Verification (CoVe) Fine-tuning")
gr.Markdown("Fine-tune CodeLlama with Chain of Verification for better code reasoning")
with gr.Tab("Setup & Training"):
with gr.Row():
with gr.Column():
gr.Markdown("### 1. Setup")
install_btn = gr.Button("Install Requirements", variant="secondary")
install_output = gr.Textbox(label="Installation Status", lines=2)
gr.Markdown("### 2. Training Configuration")
hf_token = gr.Textbox(
label="HuggingFace Token (Write Access)",
type="password",
placeholder="hf_xxxxxxxxxxxxxxxxxxxx"
)
model_name = gr.Textbox(
label="Base Model",
value="codellama/CodeLlama-7b-Instruct-hf",
interactive=True
)
start_btn = gr.Button("Start Training", variant="primary")
training_status = gr.Textbox(label="Training Status", lines=2)
with gr.Column():
gr.Markdown("### Training Progress")
logs = gr.Textbox(
label="Training Logs",
lines=15,
max_lines=20,
value="Logs will appear here once training starts..."
)
refresh_logs_btn = gr.Button("Refresh Logs", variant="secondary")
with gr.Tab("Model Testing"):
gr.Markdown("### Test the Fine-tuned Model")
test_btn = gr.Button("Test CoVe Model", variant="primary")
test_output = gr.Textbox(label="Model Output", lines=10)
with gr.Tab("Instructions"):
gr.Markdown("""
## How to Use This Space
### Step 1: Get Your HuggingFace Token
1. Go to [HuggingFace Settings](https://huggingface.co/settings/tokens)
2. Create a new token with **Write** access
3. Copy the token (starts with `hf_`)
### Step 2: Install Requirements
- Click "Install Requirements" button
- Wait for installation to complete
### Step 3: Start Training
1. Paste your HuggingFace token
2. Click "Start Training"
3. Monitor progress in the logs
### Step 4: Test the Model
- Once training is complete, test the model in the "Model Testing" tab
### Important Notes:
- **GPU Required**: This requires a paid GPU Space (T4 minimum)
- **Training Time**: Approximately 2-4 hours depending on GPU
- **Storage**: The model will be saved to your HuggingFace account
- **Monitoring**: Check logs regularly for progress updates
### Troubleshooting:
- If training fails, check the logs for error messages
- Ensure your HuggingFace token has write permissions
- Make sure you have sufficient GPU memory
""")
# Event handlers
install_btn.click(install_requirements, outputs=install_output)
start_btn.click(start_training, inputs=[hf_token, model_name], outputs=training_status)
refresh_logs_btn.click(get_training_logs, outputs=logs)
test_btn.click(test_model, outputs=test_output)
# Auto-refresh logs every 30 seconds during training
# Instead of demo.load(..., every=30)
gr.Timer(30, lambda: logs.update(value=get_training_logs()))
if __name__ == "__main__":
demo.launch(share=False) |