File size: 5,474 Bytes
b1b6ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07a2125
b1b6ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import gradio as gr
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns

from src.assets import custom_css
from src.content import ABOUT, BGB_LOGO, BGB_TITLE, CITATION_BUTTON, CITATION_BUTTON_LABEL, LOGO, TITLE
from src.leaderboard import (
    BGB_COLUMN_MAPPING,
    BGB_COLUMN_TO_DATATYPE,
    CAPABILITY_COLUMNS,
    create_bgb_leaderboard_table,
    create_leaderboard_table,
    get_bgb_leaderboard_df,
)
from src.llm_perf import get_eval_df, get_llm_perf_df
from src.panel import create_select_callback

BGB = True

# prometheus-eval/prometheus-bgb-8x7b-v2.0

# def init_leaderboard():
#     machine = "1xA10"
#     open_llm_perf_df = get_llm_perf_df(machine=machine)
#     search_bar, columns_checkboxes, leaderboard_table = create_leaderboard_table(open_llm_perf_df)
#     return machine, search_bar, columns_checkboxes, leaderboard_table


EVAL_MODELS = [
    "gpt-4-turbo-2024-04-09",
    "prometheus-bgb-8x7b-v2.0",
]

EVAL_MODEL_TABS = {
    "gpt-4-turbo-2024-04-09": "GPT-4 as a Judge πŸ…",
    "prometheus-bgb-8x7b-v2.0": "Prometheus as a Judge πŸ…",
}


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(BGB_LOGO, elem_classes="logo")
    gr.HTML(BGB_TITLE, elem_classes="title")
    # gr.HTML(BGB_LOGO_AND_TITLE, elem_classes="title")

    with gr.Tabs(elem_classes="tabs"):

        for idx, eval_model in enumerate(EVAL_MODELS):
            tab_name = EVAL_MODEL_TABS[eval_model]

            # Previous code without gradio_leaderboard

            # machine = eval_model
            # machine_textbox = gr.Textbox(value=eval_model, visible=False)

            # if BGB:
            #     eval_df = get_eval_df(eval_model_name=eval_model)
            # else:
            #     eval_df = get_llm_perf_df(machine=machine)
            # # Leaderboard
            # with gr.TabItem(tab_name, id=idx):
            #     if BGB:
            #         search_bar, columns_checkboxes, type_checkboxes, param_slider, leaderboard_table = create_bgb_leaderboard_table(eval_df)
            #     else:
            #         search_bar, columns_checkboxes, type_checkboxes, param_slider, leaderboard_table = (
            #             create_leaderboard_table(eval_df)
            #         )

            # create_select_callback(
            #     # inputs
            #     machine_textbox,
            #     # interactive
            #     columns_checkboxes,
            #     search_bar,
            #     type_checkboxes,
            #     param_slider,
            #     # outputs
            #     leaderboard_table,
            # )
            with gr.TabItem(tab_name, id=idx):

                eval_df = get_eval_df(eval_model_name=eval_model)
                eval_df = get_bgb_leaderboard_df(eval_df)

                ordered_columns = [
                    "Model πŸ€—",
                    "Average",
                    "Grounding ⚑️",
                    "Instruction Following πŸ“",
                    "Planning πŸ“…",
                    "Reasoning πŸ’‘",
                    "Refinement πŸ”©",
                    "Safety ⚠️",
                    "Theory of Mind πŸ€”",
                    "Tool Usage πŸ› οΈ",
                    "Multilingual πŸ‡¬πŸ‡«",
                    "Model Type",
                    "Model Params (B)",
                ]

                ordered_columns_types = [
                    "markdown",
                    "number",
                    "number",
                    "number",
                    "number",
                    "number",
                    "number",
                    "number",
                    "number",
                    "number",
                    "number",
                    "text",
                    "number",
                ]

                eval_df = eval_df[ordered_columns]

                Leaderboard(
                    value=eval_df,
                    datatype=ordered_columns_types,
                    select_columns=SelectColumns(
                        default_selection=ordered_columns,
                        cant_deselect=["Model πŸ€—", "Model Type", "Model Params (B)"],
                        label="Select Columns to Display\n(Multilingual is excluded when measuring average)",
                    ),
                    search_columns=["Model πŸ€—"],
                    # hide_columns=["model_name_for_query", "Model Size"],
                    filter_columns=[
                        ColumnFilter("Model Type", type="checkboxgroup", label="Model types"),
                        ColumnFilter(
                            "Model Params (B)",
                            min=0,
                            max=150,
                            default=[0, 150],
                            type="slider",
                            label="Model Params (B)",
                        ),
                    ],
                )

        ####################### ABOUT TAB #######################
        with gr.TabItem("About πŸ“–", id=3):
            gr.Markdown(ABOUT, elem_classes="descriptive-text")

    ####################### CITATION
    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON,
                label=CITATION_BUTTON_LABEL,
                elem_id="citation-button",
                show_copy_button=True,
            )

if __name__ == "__main__":
    # Launch demo
    demo.queue().launch()