File size: 5,474 Bytes
b1b6ed6 07a2125 b1b6ed6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import gradio as gr
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
from src.assets import custom_css
from src.content import ABOUT, BGB_LOGO, BGB_TITLE, CITATION_BUTTON, CITATION_BUTTON_LABEL, LOGO, TITLE
from src.leaderboard import (
BGB_COLUMN_MAPPING,
BGB_COLUMN_TO_DATATYPE,
CAPABILITY_COLUMNS,
create_bgb_leaderboard_table,
create_leaderboard_table,
get_bgb_leaderboard_df,
)
from src.llm_perf import get_eval_df, get_llm_perf_df
from src.panel import create_select_callback
BGB = True
# prometheus-eval/prometheus-bgb-8x7b-v2.0
# def init_leaderboard():
# machine = "1xA10"
# open_llm_perf_df = get_llm_perf_df(machine=machine)
# search_bar, columns_checkboxes, leaderboard_table = create_leaderboard_table(open_llm_perf_df)
# return machine, search_bar, columns_checkboxes, leaderboard_table
EVAL_MODELS = [
"gpt-4-turbo-2024-04-09",
"prometheus-bgb-8x7b-v2.0",
]
EVAL_MODEL_TABS = {
"gpt-4-turbo-2024-04-09": "GPT-4 as a Judge π
",
"prometheus-bgb-8x7b-v2.0": "Prometheus as a Judge π
",
}
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(BGB_LOGO, elem_classes="logo")
gr.HTML(BGB_TITLE, elem_classes="title")
# gr.HTML(BGB_LOGO_AND_TITLE, elem_classes="title")
with gr.Tabs(elem_classes="tabs"):
for idx, eval_model in enumerate(EVAL_MODELS):
tab_name = EVAL_MODEL_TABS[eval_model]
# Previous code without gradio_leaderboard
# machine = eval_model
# machine_textbox = gr.Textbox(value=eval_model, visible=False)
# if BGB:
# eval_df = get_eval_df(eval_model_name=eval_model)
# else:
# eval_df = get_llm_perf_df(machine=machine)
# # Leaderboard
# with gr.TabItem(tab_name, id=idx):
# if BGB:
# search_bar, columns_checkboxes, type_checkboxes, param_slider, leaderboard_table = create_bgb_leaderboard_table(eval_df)
# else:
# search_bar, columns_checkboxes, type_checkboxes, param_slider, leaderboard_table = (
# create_leaderboard_table(eval_df)
# )
# create_select_callback(
# # inputs
# machine_textbox,
# # interactive
# columns_checkboxes,
# search_bar,
# type_checkboxes,
# param_slider,
# # outputs
# leaderboard_table,
# )
with gr.TabItem(tab_name, id=idx):
eval_df = get_eval_df(eval_model_name=eval_model)
eval_df = get_bgb_leaderboard_df(eval_df)
ordered_columns = [
"Model π€",
"Average",
"Grounding β‘οΈ",
"Instruction Following π",
"Planning π
",
"Reasoning π‘",
"Refinement π©",
"Safety β οΈ",
"Theory of Mind π€",
"Tool Usage π οΈ",
"Multilingual π¬π«",
"Model Type",
"Model Params (B)",
]
ordered_columns_types = [
"markdown",
"number",
"number",
"number",
"number",
"number",
"number",
"number",
"number",
"number",
"number",
"text",
"number",
]
eval_df = eval_df[ordered_columns]
Leaderboard(
value=eval_df,
datatype=ordered_columns_types,
select_columns=SelectColumns(
default_selection=ordered_columns,
cant_deselect=["Model π€", "Model Type", "Model Params (B)"],
label="Select Columns to Display\n(Multilingual is excluded when measuring average)",
),
search_columns=["Model π€"],
# hide_columns=["model_name_for_query", "Model Size"],
filter_columns=[
ColumnFilter("Model Type", type="checkboxgroup", label="Model types"),
ColumnFilter(
"Model Params (B)",
min=0,
max=150,
default=[0, 150],
type="slider",
label="Model Params (B)",
),
],
)
####################### ABOUT TAB #######################
with gr.TabItem("About π", id=3):
gr.Markdown(ABOUT, elem_classes="descriptive-text")
####################### CITATION
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
show_copy_button=True,
)
if __name__ == "__main__":
# Launch demo
demo.queue().launch()
|