Spaces:
Sleeping
Sleeping
File size: 11,305 Bytes
6d95c4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import pandas as pd
import json
import os
from sklearn.preprocessing import MinMaxScaler
import plotly.express as px
import plotly.graph_objects as go
from dash import html
from . import constants
from . import Predictor
class Encoder:
"""
Takes a field dictionary and creates min/max scalers using their ranges.
Field dictionary needs to be in format (see prescriptors/fields.json):
{
"field a": {"range": [x, y]},
"field b": {"range": [z, s]}
}
"""
def __init__(self, fields):
self.transformers = {}
for field in fields:
field_values = fields[field]["range"]
self.transformers[field] = MinMaxScaler(clip=True)
data_df = pd.DataFrame({field: field_values})
self.transformers[field].fit(data_df)
def encode_as_df(self, df):
"""
Encodes a given dataframe using the min max scalers.
:param df: a dataframe to encode
:return: a dataframe of encoded values. Only returns columns in the transformer dictionary.
"""
values_by_column = {}
for col in df:
if col in self.transformers:
encoded_values = self.transformers[col].transform(df[[col]])
values_by_column[col] = encoded_values.squeeze().tolist()
encoded_df = pd.DataFrame.from_records(values_by_column,
index=list(range(df.shape[0]))
)[values_by_column.keys()]
return encoded_df
def add_nonland(data: pd.Series) -> pd.Series:
"""
Adds a nonland column that is the difference between 1 and
LAND_USE_COLS.
Note: Since sum isn't exactly 1 we just set to 0 if we get a negative.
:param data: pd Series containing land use data.
:return: pd Series with nonland column added.
"""
data = data[constants.LAND_USE_COLS]
nonland = 1 - data.sum() if data.sum() <= 1 else 0
data['nonland'] = nonland
return data[constants.CHART_COLS]
def create_map(df: pd.DataFrame, zoom=10, color_idx = None) -> go.Figure:
"""
Creates map figure with data centered and zoomed in with appropriate point marked.
:param df: DataFrame of data to plot. This dataframe has its index reset.
:param lat_center: Latitude to center map on.
:param lon_center: Longitude to center map on.
:param zoom: Zoom level of map.
:param color_idx: Index of point to color red in reset index.
:return: Plotly figure
"""
color_seq = [px.colors.qualitative.Plotly[0], px.colors.qualitative.Plotly[1]]
# Add color column
color = ["blue" for _ in range(len(df))]
if color_idx:
color[color_idx] = "red"
df["color"] = color
map_fig = px.scatter_geo(
df,
lat="lat",
lon="lon",
color="color",
color_discrete_sequence=color_seq,
hover_data={"lat": True, "lon": True, "color": False},
size_max=10
)
map_fig.update_layout(margin={"l": 0, "r": 10, "t": 0, "b": 0}, showlegend=False)
map_fig.update_geos(projection_scale=zoom, projection_type="orthographic", showcountries=True, fitbounds="locations")
return map_fig
def create_check_options(values: list) -> list:
"""
Creates dash HTML options for checklist based on values.
:param values: List of values to create options for.
:return: List of dash HTML options.
"""
options = []
for val in values:
options.append(
{"label": [html.I(className="bi bi-lock"), html.Span(val)],
"value": val})
return options
def compute_percent_change(context: pd.Series, presc: pd.Series) -> float:
"""
Computes percent land use change from context to presc
:param context: Context land use data
:param presc: Prescribed land use data
:return: Percent land use change
"""
diffs = presc[constants.RECO_COLS] - context[constants.RECO_COLS]
change = diffs[diffs > 0].sum()
total = context[constants.LAND_USE_COLS].sum()
# If we can't change the land use just return 0.
if total <= 0:
return 0
percent_changed = change / total
assert percent_changed <= 1
return percent_changed
def _create_hovertext(labels: list, parents: list, values: list, title: str) -> list:
"""
Helper function that formats the hover text for the treemap to be 2 decimals.
:param labels: Labels according to treemap format.
:param parents: Parents for each label according to treemap format.
:param values: Values for each label according to treemap format.
:param title: Title of treemap, root node's name.
:return: List of hover text strings.
"""
hovertext = []
for i, label in enumerate(labels):
v = values[i] * 100
# Get value of parent or 100 if parent is ''
parent_v = values[labels.index(parents[i])] * 100 if parents[i] != '' else values[0] * 100
if parents[i] == '':
hovertext.append(f"{label}: {v:.2f}%")
elif parents[i] == title:
hovertext.append(f"{label}<br>{v:.2f}% of {title}")
else:
hovertext.append(f"{label}<br>{v:.2f}% of {title}<br>{(v/parent_v)*100:.2f}% of {parents[i]}")
return hovertext
def create_treemap(data=pd.Series, type_context=True, year=2021) -> go.Figure:
"""
:param data: Pandas series of land use data
:param type_context: If the title should be context or prescribed
:return: Treemap figure
"""
title = f"Context in {year}" if type_context else f"Prescribed for {year+1}"
tree_params = {
"branchvalues": "total",
"sort": False,
"texttemplate": "%{label}<br>%{percentRoot:.2%}",
"hoverinfo": "label+percent root+percent parent",
"root_color": "lightgrey"
}
labels, parents, values = None, None, None
if data.empty:
labels = [title]
parents = [""]
values = [1]
else:
total = data[constants.LAND_USE_COLS].sum()
c3 = data[constants.C3].sum()
c4 = data[constants.C4].sum()
crops = c3 + c4
primary = data[constants.PRIMARY].sum()
secondary = data[constants.SECONDARY].sum()
fields = data[constants.FIELDS].sum()
labels = [title, "Nonland",
"Crops", "C3", "C4", "c3ann", "c3nfx", "c3per", "c4ann", "c4per",
"Primary Vegetation", "primf", "primn",
"Secondary Vegetation", "secdf", "secdn",
"Urban",
"Fields", "pastr", "range"]
parents = ["", title,
title, "Crops", "Crops", "C3", "C3", "C3", "C4", "C4",
title, "Primary Vegetation", "Primary Vegetation",
title, "Secondary Vegetation", "Secondary Vegetation",
title,
title, "Fields", "Fields"]
values = [total + data["nonland"], data["nonland"],
crops, c3, c4, data["c3ann"], data["c3nfx"], data["c3per"], data["c4ann"], data["c4per"],
primary, data["primf"], data["primn"],
secondary, data["secdf"], data["secdn"],
data["urban"],
fields, data["pastr"], data["range"]]
tree_params["customdata"] = _create_hovertext(labels, parents, values, title)
tree_params["hovertemplate"] = "%{customdata}<extra></extra>"
assert len(labels) == len(parents)
assert len(parents) == len(values)
fig = go.Figure(
go.Treemap(
labels = labels,
parents = parents,
values = values,
**tree_params
)
)
colors = px.colors.qualitative.Plotly
fig.update_layout(
treemapcolorway = [colors[1], colors[4], colors[2], colors[7], colors[3], colors[0]],
margin={"t": 0, "b": 0, "l": 10, "r": 10}
)
return fig
def create_pie(data=pd.Series, type_context=True, year=2021) -> go.Figure:
"""
:param data: Pandas series of land use data
:param type_context: If the title should be context or prescribed
:return: Pie chart figure
"""
values = None
# Sum for case where all zeroes, which allows us to display pie even when presc is reset
if data.empty or data.sum() == 0:
values = [0 for _ in range(len(constants.CHART_COLS))]
values[-1] = 1
else:
values = data[constants.CHART_COLS].tolist()
assert(len(values) == len(constants.CHART_COLS))
title = f"Context in {year}" if type_context else f"Prescribed for {year+1}"
p = px.colors.qualitative.Plotly
ps = px.colors.qualitative.Pastel1
d = px.colors.qualitative.Dark24
#['c3ann', 'c3nfx', 'c3per', 'c4ann', 'c4per', 'pastr', 'primf', 'primn',
# 'range', 'secdf', 'secdn', 'urban', 'nonland]
colors = [p[4], d[8], ps[4], p[9], ps[5], p[0], p[2], d[14], p[5], p[7], d[2], p[3], p[1]]
fig = go.Figure(
go.Pie(
values = values,
labels = constants.CHART_COLS,
textposition = "inside",
sort = False,
marker_colors = colors,
hovertemplate = "%{label}<br>%{value}<br>%{percent}<extra></extra>",
title = title
)
)
if type_context:
fig.update_layout(showlegend=False)
# To make up for the hidden legend
fig.update_layout(margin={"t": 50, "b": 50, "l": 50, "r": 50})
else:
fig.update_layout(margin={"t": 0, "b": 0, "l": 0, "r": 0})
return fig
def create_pareto(pareto_df: pd.DataFrame, presc_id: int) -> go.Figure:
"""
:param pareto_df: Pandas data frame containing the pareto front
:param presc_id: The currently selected prescriptor id
:return: A pareto plot figure
"""
fig = go.Figure(
go.Scatter(
x=pareto_df['change'] * 100,
y=pareto_df['ELUC'],
# marker='o',
)
)
# Highlight the selected prescriptor
presc_df = pareto_df[pareto_df["id"] == presc_id]
fig.add_scatter(x=presc_df['change'] * 100,
y=presc_df['ELUC'],
marker={
"color": 'red',
"size": 10
})
# Name axes and hide legend
fig.update_layout(xaxis_title={"text": "Change (%)"},
yaxis_title={"text": 'ELUC (tC/ha)'},
showlegend=False,
title="Prescriptors",
)
fig.update_traces(hovertemplate="Average Change: %{x} <span>%</span>"
"<br>"
" Average ELUC: %{y} tC/ha<extra></extra>")
return fig
def load_predictors() -> dict:
"""
Loads in predictors from json file according to config.
:return: dict of predictor name -> predictor object.
"""
predictor_cfg = json.load(open(os.path.join(constants.PREDICTOR_PATH, "predictors.json")))
predictors = dict()
# This is ok because python dicts are ordered.
for row in predictor_cfg["predictors"]:
predictors[row["name"]] = Predictor.SkLearnPredictor(os.path.join(constants.PREDICTOR_PATH, row["filename"]))
return predictors |