File size: 13,575 Bytes
5ddef29
 
 
 
 
 
 
bab1e75
928dc00
d49e1e5
5ddef29
b33f45e
5ddef29
 
 
 
 
 
 
 
4fff7a9
5ddef29
 
 
4fff7a9
5ddef29
 
 
4fff7a9
5ddef29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f14be5
5ddef29
 
f429ce6
 
 
 
5ddef29
 
 
 
 
 
 
 
d141929
5ddef29
 
 
 
 
 
 
 
 
 
 
 
 
8637ff9
 
 
 
 
 
 
5ddef29
 
 
b33f45e
b62f01b
 
 
 
 
 
 
 
 
b33f45e
b62f01b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b33f45e
b62f01b
b33f45e
 
b62f01b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ddef29
 
b62f01b
 
 
 
 
 
5ddef29
b33f45e
8637ff9
1668142
5ddef29
 
 
 
 
 
3bebd7a
 
79e5823
 
5ddef29
 
 
 
f8efbfa
 
 
5ddef29
 
b33f45e
8637ff9
f8efbfa
 
 
8637ff9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8efbfa
 
 
8637ff9
 
d49e1e5
5ddef29
 
 
 
 
 
8637ff9
98511b0
 
a6c6039
810d812
98511b0
cde996a
98511b0
b62f01b
 
 
 
 
 
 
 
 
 
 
 
 
 
5a68caf
b62f01b
 
2e7bb9d
b62f01b
 
 
925e1f5
 
3bebd7a
b62f01b
 
 
5ddef29
b62f01b
 
b33f45e
b62f01b
 
 
b33f45e
 
8637ff9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f429ce6
8637ff9
 
0370bc2
b33f45e
8637ff9
 
 
 
 
 
 
 
 
 
 
 
b33f45e
8637ff9
 
 
b33f45e
 
 
b62f01b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b33f45e
 
 
4a89318
e5111ed
3c088c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import gradio as gr
import requests
import time
import json
import base64
import os
from io import BytesIO
import html
import re



class Prodia:
    def __init__(self, api_key, base=None):
        self.base = base or "https://api.prodia.com/v1"
        self.headers = {
            "X-Prodia-Key": api_key
        }
    
    def generate(self, params):
        response = self._post(f"{self.base}/sd/generate", params)
        return response.json()
    
    def transform(self, params):
        response = self._post(f"{self.base}/sd/transform", params)
        return response.json()
    
    def controlnet(self, params):
        response = self._post(f"{self.base}/sd/controlnet", params)
        return response.json()
    
    def get_job(self, job_id):
        response = self._get(f"{self.base}/job/{job_id}")
        return response.json()

    def wait(self, job):
        job_result = job

        while job_result['status'] not in ['succeeded', 'failed']:
            time.sleep(0.25)
            job_result = self.get_job(job['job'])

        return job_result

    def list_models(self):
        response = self._get(f"{self.base}/sd/models")
        return response.json()

    def list_samplers(self):
        response = self._get(f"{self.base}/sd/samplers")
        return response.json()

    def _post(self, url, params):
        headers = {
            **self.headers,
            "Content-Type": "application/json"
        }
        response = requests.post(url, headers=headers, data=json.dumps(params))

        if response.status_code != 200:
            print(params)
            raise Exception(f"Bad Prodia Response: {response.status_code}")

        return response

    def _get(self, url):
        response = requests.get(url, headers=self.headers)

        if response.status_code != 200:
            raise Exception(f"Bad Prodia Response: {response.status_code}")

        return response


def image_to_base64(image):
    # Convert the image to bytes
    buffered = BytesIO()
    image.save(buffered, format="PNG")  # You can change format to PNG if needed
    
    # Encode the bytes to base64
    img_str = base64.b64encode(buffered.getvalue())

    return img_str.decode('utf-8')  # Convert bytes to string


def remove_id_and_ext(text):
    text = re.sub(r'\[.*\]$', '', text)
    extension = text[-12:].strip()
    if extension == "safetensors":
        text = text[:-13]
    elif extension == "ckpt":
        text = text[:-4]
    return text


def get_data(text):
    results = {}
    patterns = {
        'prompt': r'(.*)',
        'negative_prompt': r'Negative prompt: (.*)',
        'steps': r'Steps: (\d+),',
        'seed': r'Seed: (\d+),',
        'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)', 
        'model': r'Model:\s*([^\s,]+)',
        'cfg_scale': r'CFG scale:\s*([\d\.]+)',
        'size': r'Size:\s*([0-9]+x[0-9]+)'
        }
    for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']:
        match = re.search(patterns[key], text)
        if match:
            results[key] = match.group(1)
        else:
            results[key] = None
    if results['size'] is not None:
        w, h = results['size'].split("x")
        results['w'] = w
        results['h'] = h
    else:
        results['w'] = None
        results['h'] = None
    return results


def send_to_txt2img(image):

    result = {tabs: gr.update(selected="t2i")}

    try:
        text = image.info['parameters']
        data = get_data(text)
        result[prompt] = gr.update(value=data['prompt'])
        result[negative_prompt] = gr.update(value=data['negative_prompt']) if data['negative_prompt'] is not None else gr.update()
        result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update()
        result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update()
        result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update()
        result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update()
        result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update()
        result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update()
        if model in model_names:
            result[model] = gr.update(value=model_names[model])
        else:
            result[model] = gr.update()
        return result

    except Exception as e:
        print(e)

        return result


prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
model_list = prodia_client.list_models()
model_names = {}

for model_name in model_list:
    name_without_ext = remove_id_and_ext(model_name)
    model_names[name_without_ext] = model_name


def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
    
    result = prodia_client.generate({
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "model": model,
        "steps": steps,
        "sampler": sampler,
        "cfg_scale": cfg_scale,
        "width": width,
        "height": height,
        "seed": seed
    })

    job = prodia_client.wait(result)

    if job['status'] != "succeeded":
        raise gr.Error("job failed")

    return job["imageUrl"]


def img2img(input_image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
    if input_image is None:
        raise gr.Error("Please add an image to run img2img")
        
    result = prodia_client.transform({
        "imageData": image_to_base64(input_image),
        "denoising_strength": denoising,
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "model": model,
        "steps": steps,
        "sampler": sampler,
        "cfg_scale": cfg_scale,
        "width": width,
        "height": height,
        "seed": seed
    })

    job = prodia_client.wait(result)

    if job['status'] != "succeeded":
        raise gr.Error("job failed")

    return job["imageUrl"]


css = """
#generate {
    height: 100%;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Row():
        with gr.Column(scale=6):
            model = gr.Dropdown(interactive=True,value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True, label="Stable Diffusion Checkpoint", choices=prodia_client.list_models())
  
        with gr.Column(scale=1):
            gr.Markdown(elem_id="powered-by-prodia", value="AUTOMATIC1111 Stable Diffusion Web UI.<br>Powered by [Prodia](https://prodia.com).<br>For more features and faster generation times check out our [API Docs](https://docs.prodia.com/reference/getting-started-guide).")

    with gr.Tabs() as tabs:
        with gr.Tab("txt2img", id='t2i'):
            with gr.Row():
                with gr.Column(scale=6, min_width=600):
                    prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", placeholder="Prompt", show_label=False, lines=3)
                    negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
                with gr.Column():
                    text_button = gr.Button("Generate", variant='primary', elem_id="generate")
                    
            with gr.Row():
                with gr.Column(scale=3):
                    with gr.Tab("Generation"):
                        with gr.Row():
                            with gr.Column(scale=1):
                                sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers())
                                
                            with gr.Column(scale=1):
                                steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
    
                        with gr.Row():
                            with gr.Column(scale=1):
                                width = gr.Slider(label="Width", maximum=1024, minimum=128, value=512, step=8)
                                height = gr.Slider(label="Height", maximum=1024, minimum=128, value=512, step=8)
                            
                            with gr.Column(scale=1):
                                batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
                                batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
    
                        cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
                        seed = gr.Number(label="Seed", value=-1)

                with gr.Column(scale=2):
                    image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png")
    
            text_button.click(txt2img, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height,
                                               seed], outputs=image_output, concurrency_limit=64)
        
        with gr.Tab("img2img", id='i2i'):
            with gr.Row():
                with gr.Column(scale=6, min_width=600):
                    i2i_prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", placeholder="Prompt", show_label=False, lines=3)
                    i2i_negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
                with gr.Column():
                    i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate")
                    
            with gr.Row():
                with gr.Column(scale=3):
                    with gr.Tab("Generation"):
                        i2i_image_input = gr.Image(type="pil")

                        with gr.Row():
                            with gr.Column(scale=1):
                                i2i_sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers())
                                
                            with gr.Column(scale=1):
                                i2i_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)

                        with gr.Row():
                            with gr.Column(scale=1):
                                i2i_width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
                                i2i_height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
                            
                            with gr.Column(scale=1):
                                i2i_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
                                i2i_batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
    
                        i2i_cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
                        i2i_denoising = gr.Slider(label="Denoising Strength", minimum=0, maximum=1, value=0.7, step=0.1)
                        i2i_seed = gr.Number(label="Seed", value=-1)

                with gr.Column(scale=2):
                    i2i_image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png")
    
            i2i_text_button.click(img2img, inputs=[i2i_image_input, i2i_denoising, i2i_prompt, i2i_negative_prompt,
                                                   model, i2i_steps, i2i_sampler, i2i_cfg_scale, i2i_width, i2i_height,
                                                   i2i_seed], outputs=i2i_image_output, concurrency_limit=64)
        
        with gr.Tab("PNG Info"):
            def plaintext_to_html(text, classname=None):
                content = "<br>\n".join(html.escape(x) for x in text.split('\n'))
    
                return f"<p class='{classname}'>{content}</p>" if classname else f"<p>{content}</p>"
    
    
            def get_exif_data(image):
                items = image.info
    
                info = ''
                for key, text in items.items():
                    info += f"""
                    <div>
                    <p><b>{plaintext_to_html(str(key))}</b></p>
                    <p>{plaintext_to_html(str(text))}</p>
                    </div>
                    """.strip()+"\n"
    
                if len(info) == 0:
                    message = "Nothing found in the image."
                    info = f"<div><p>{message}<p></div>"
    
                return info
    
            with gr.Row():
                with gr.Column():
                    image_input = gr.Image(type="pil")
                    
                with gr.Column():
                    exif_output = gr.HTML(label="EXIF Data")
                    send_to_txt2img_btn = gr.Button("Send to txt2img")
    
            image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output)
            send_to_txt2img_btn.click(send_to_txt2img, inputs=[image_input], outputs=[tabs, prompt, negative_prompt,
                                                                                      steps, seed, model, sampler,
                                                                                      width, height, cfg_scale],
                                      concurrency_limit=32)

demo.queue(max_size=20, api_open=False).launch(max_threads=40, show_api=False)