Spaces:
Runtime error
Runtime error
File size: 4,439 Bytes
883b1b1 f33eee9 883b1b1 9bf1c9d 883b1b1 f33eee9 883b1b1 f33eee9 883b1b1 9bf1c9d 883b1b1 9bf1c9d 883b1b1 9bf1c9d 883b1b1 f33eee9 ffe0cfc 883b1b1 9bf1c9d 883b1b1 9bf1c9d 883b1b1 9bf1c9d 883b1b1 9bf1c9d 883b1b1 9bf1c9d 883b1b1 9bf1c9d 883b1b1 9bf1c9d 883b1b1 9bf1c9d 883b1b1 9bf1c9d 883b1b1 9bf1c9d 883b1b1 f33eee9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import io
from fastapi import FastAPI, File, UploadFile
import subprocess
import os
import requests
import random
from datetime import datetime
from datetime import date
import json
from pydantic import BaseModel
from typing import Annotated
import random
from fastapi import FastAPI, Response
import string
import time
from huggingface_hub import InferenceClient
from fastapi import Form
class Query(BaseModel):
text: str
code:str
host:str
class Query2(BaseModel):
text: str
code:str
filename:str
host:str
class QueryM(BaseModel):
text: str
tokens:int
temp:float
topp:float
topk:float
from fastapi import FastAPI, Request, Depends, UploadFile, File
from fastapi.exceptions import HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=['*'],
allow_credentials=True,
allow_methods=['*'],
allow_headers=['*'],
)
# cred = credentials.Certificate('key.json')
# app1 = firebase_admin.initialize_app(cred)
# db = firestore.client()
# data_frame = pd.read_csv('data.csv')
@app.on_event("startup")
async def startup_event():
print("on startup")
# requests.get("https://audiospace-1-u9912847.deta.app/sendcode")
audio_space="https://audiospace-1-u9912847.deta.app/uphoto"
import threading
from huggingface_hub.inference_api import InferenceApi
client = InferenceClient()
@app.post("/image")
async def get_answer(q: Query ):
text = q.text
try:
global client
imagei = client.text_to_image(text)
byte_array = io.BytesIO()
imagei.save(byte_array, format='JPEG')
response = Response(content=byte_array.getvalue(), media_type="image/png")
return response
except:
return JSONResponse({"status":False})
@app.post("/mistral")
async def get_answer(q: QueryM ):
text = q.text
try:
client = InferenceClient()
generate_kwargs = dict(
max_new_tokens= int(q.tokens),
do_sample=True,
top_p= q.topp,
top_k=int(q.topk),
temperature=q.temp,
)
inputs= text
response = client.post(json={"inputs": inputs, "parameters": generate_kwargs}, model="mistralai/Mistral-7B-Instruct-v0.1")
json_string = response.decode('utf-8')
list_of_dicts = json.loads(json_string)
result_dict = list_of_dicts[0]
x=(result_dict['generated_text'])
x=x.replace(inputs,'')
return JSONResponse({"result":x,"status":True})
except Exception as e:
print(e)
return JSONResponse({"status":False})
''' to be removed when main code is updated '''
@app.post("/")
async def get_answer(q: Query ):
text = q.text
code= q.code
host= q.host
N = 20
res = ''.join(random.choices(string.ascii_uppercase +
string.digits, k=N))
res= res+ str(time.time())
filename= res
t = threading.Thread(target=do_ML, args=(filename,text,code,host))
t.start()
return JSONResponse({"id": filename})
return "hello"
@app.post("/error")
async def get_answer(q: Query2 ):
text = q.text
code= q.code
filename= q.filename
host= q.host
t = threading.Thread(target=do_ML, args=(filename,text,code,host))
t.start()
return JSONResponse({"id": filename})
import requests
import io
import io
from PIL import Image
import json
# client = InferenceClient(model="SG161222/Realistic_Vision_V1.4")
def do_ML(filename:str,text:str,code:str,host:str):
try:
global client
imagei = client.text_to_image(text)
byte_array = io.BytesIO()
imagei.save(byte_array, format='JPEG')
image_bytes = byte_array.getvalue()
files = {'file': image_bytes}
global audio_space
url = audio_space+code
data = {"filename": filename}
response = requests.post(url, files=files,data= data)
print(response.text)
if response.status_code == 200:
print("File uploaded successfully.")
# Handle the response as needed
else:
print("File upload failed.")
except:
data={"text":text,"filename":filename}
requests.post(host+"texttoimage2handleerror",data=data)
|