File size: 9,231 Bytes
cbcb207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from collections import namedtuple
import torch
from torchvision import models
from src.utils import utils
"""
    More detail about the VGG architecture (if you want to understand magic/hardcoded numbers) can be found here:
    
    https://github.com/pytorch/vision/blob/3c254fb7af5f8af252c24e89949c54a3461ff0be/torchvision/models/vgg.py
"""


class Vgg16(torch.nn.Module):
    """Only those layers are exposed which have already proven to work nicely."""

    def __init__(self, requires_grad=False, show_progress=False):
        super().__init__()
        vgg_pretrained_features = models.vgg16(pretrained=True,
                                               progress=show_progress).features
        self.layer_names = {'relu1_2': 1, 'relu2_2': 2, 
                            'relu3_3': 3, 'relu4_3': 4}
        self.content_feature_maps_index = self.layer_names[
            utils.yamlGet('contentLayer')]-1  # relu2_2
        self.style_feature_maps_indices = list(range(len(
            self.layer_names)))  # all layers used for style representation

        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        for x in range(4):
            self.slice1.add_module(str(x), vgg_pretrained_features[x])
        for x in range(4, 9):
            self.slice2.add_module(str(x), vgg_pretrained_features[x])
        for x in range(9, 16):
            self.slice3.add_module(str(x), vgg_pretrained_features[x])
        for x in range(16, 23):
            self.slice4.add_module(str(x), vgg_pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, x):
        x = self.slice1(x)
        relu1_2 = x
        x = self.slice2(x)
        relu2_2 = x
        x = self.slice3(x)
        relu3_3 = x
        x = self.slice4(x)
        relu4_3 = x
        vgg_outputs = namedtuple("VggOutputs", self.layer_names.keys())
        out = vgg_outputs(relu1_2, relu2_2, relu3_3, relu4_3)
        return out


class Vgg16Experimental(torch.nn.Module):
    """Everything exposed so you can play with different combinations for style and content representation"""

    def __init__(self, requires_grad=False, show_progress=False):
        super().__init__()
        vgg_pretrained_features = models.vgg16(pretrained=True,
                                               progress=show_progress).features
        self.layer_names = [
            'relu1_1', 'relu2_1', 'relu2_2', 'relu3_1', 'relu3_2', 'relu4_1',
            'relu4_3', 'relu5_1'
        ]
        self.content_feature_maps_index = 4
        self.style_feature_maps_indices = list(range(len(
            self.layer_names)))  # all layers used for style representation

        self.conv1_1 = vgg_pretrained_features[0]
        self.relu1_1 = vgg_pretrained_features[1]
        self.conv1_2 = vgg_pretrained_features[2]
        self.relu1_2 = vgg_pretrained_features[3]
        self.max_pooling1 = vgg_pretrained_features[4]
        self.conv2_1 = vgg_pretrained_features[5]
        self.relu2_1 = vgg_pretrained_features[6]
        self.conv2_2 = vgg_pretrained_features[7]
        self.relu2_2 = vgg_pretrained_features[8]
        self.max_pooling2 = vgg_pretrained_features[9]
        self.conv3_1 = vgg_pretrained_features[10]
        self.relu3_1 = vgg_pretrained_features[11]
        self.conv3_2 = vgg_pretrained_features[12]
        self.relu3_2 = vgg_pretrained_features[13]
        self.conv3_3 = vgg_pretrained_features[14]
        self.relu3_3 = vgg_pretrained_features[15]
        self.max_pooling3 = vgg_pretrained_features[16]
        self.conv4_1 = vgg_pretrained_features[17]
        self.relu4_1 = vgg_pretrained_features[18]
        self.conv4_2 = vgg_pretrained_features[19]
        self.relu4_2 = vgg_pretrained_features[20]
        self.conv4_3 = vgg_pretrained_features[21]
        self.relu4_3 = vgg_pretrained_features[22]
        self.max_pooling4 = vgg_pretrained_features[23]
        self.conv5_1 = vgg_pretrained_features[24]
        self.relu5_1 = vgg_pretrained_features[25]
        self.conv5_2 = vgg_pretrained_features[26]
        self.relu5_2 = vgg_pretrained_features[27]
        self.conv5_3 = vgg_pretrained_features[28]
        self.relu5_3 = vgg_pretrained_features[29]
        self.max_pooling5 = vgg_pretrained_features[30]
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, x):
        x = self.conv1_1(x)
        conv1_1 = x
        x = self.relu1_1(x)
        relu1_1 = x
        x = self.conv1_2(x)
        conv1_2 = x
        x = self.relu1_2(x)
        relu1_2 = x
        x = self.max_pooling1(x)
        x = self.conv2_1(x)
        conv2_1 = x
        x = self.relu2_1(x)
        relu2_1 = x
        x = self.conv2_2(x)
        conv2_2 = x
        x = self.relu2_2(x)
        relu2_2 = x
        x = self.max_pooling2(x)
        x = self.conv3_1(x)
        conv3_1 = x
        x = self.relu3_1(x)
        relu3_1 = x
        x = self.conv3_2(x)
        conv3_2 = x
        x = self.relu3_2(x)
        relu3_2 = x
        x = self.conv3_3(x)
        conv3_3 = x
        x = self.relu3_3(x)
        relu3_3 = x
        x = self.max_pooling3(x)
        x = self.conv4_1(x)
        conv4_1 = x
        x = self.relu4_1(x)
        relu4_1 = x
        x = self.conv4_2(x)
        conv4_2 = x
        x = self.relu4_2(x)
        relu4_2 = x
        x = self.conv4_3(x)
        conv4_3 = x
        x = self.relu4_3(x)
        relu4_3 = x
        x = self.max_pooling4(x)
        x = self.conv5_1(x)
        conv5_1 = x
        x = self.relu5_1(x)
        relu5_1 = x
        x = self.conv5_2(x)
        conv5_2 = x
        x = self.relu5_2(x)
        relu5_2 = x
        x = self.conv5_3(x)
        conv5_3 = x
        x = self.relu5_3(x)
        relu5_3 = x
        x = self.max_pooling5(x)
        # expose only the layers that you want to experiment with here
        vgg_outputs = namedtuple("VggOutputs", self.layer_names)
        out = vgg_outputs(relu1_1, relu2_1, relu2_2, relu3_1, relu3_2, relu4_1,
                          relu4_3, relu5_1)

        return out


class Vgg19(torch.nn.Module):
    """
    Used in the original NST paper, only those layers are exposed which were used in the original paper

    'conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1' were used for style representation
    'conv4_2' was used for content representation (although they did some experiments with conv2_2 and conv5_2)
    """

    def __init__(self,
                 requires_grad=False,
                 show_progress=False,
                 use_relu=True):
        super().__init__()
        vgg_pretrained_features = models.vgg19(pretrained=True,
                                               progress=show_progress).features
        if use_relu:  # use relu or as in original paper conv layers
            self.layer_names = [
                'relu1_1', 'relu2_1', 'relu3_1', 'relu4_1', 'relu5_1'
            ]
            self.offset = 1
        else:
            self.layer_names = [
                'conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv4_2',
                'conv5_1'
            ]
            self.offset = 0
        self.content_feature_maps_index = 4  # conv4_2
        # all layers used for style representation except conv4_2
        self.style_feature_maps_indices = list(range(len(self.layer_names)))
        self.style_feature_maps_indices.remove(4)  # conv4_2

        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        self.slice6 = torch.nn.Sequential()
        for x in range(1 + self.offset):
            self.slice1.add_module(str(x), vgg_pretrained_features[x])
        for x in range(1 + self.offset, 6 + self.offset):
            self.slice2.add_module(str(x), vgg_pretrained_features[x])
        for x in range(6 + self.offset, 11 + self.offset):
            self.slice3.add_module(str(x), vgg_pretrained_features[x])
        for x in range(11 + self.offset, 20 + self.offset):
            self.slice4.add_module(str(x), vgg_pretrained_features[x])
        for x in range(20 + self.offset, 22):
            self.slice5.add_module(str(x), vgg_pretrained_features[x])
        for x in range(22, 29 + +self.offset):
            self.slice6.add_module(str(x), vgg_pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, x):
        x = self.slice1(x)
        layer1_1 = x
        x = self.slice2(x)
        layer2_1 = x
        x = self.slice3(x)
        layer3_1 = x
        x = self.slice4(x)
        layer4_1 = x
        x = self.slice5(x)
        conv4_2 = x
        x = self.slice6(x)
        layer5_1 = x
        vgg_outputs = namedtuple("VggOutputs", self.layer_names)
        out = vgg_outputs(layer1_1, layer2_1, layer3_1, layer4_1, conv4_2,
                          layer5_1)
        return out