File size: 17,250 Bytes
71b21b4
678ab98
7fcd908
678ab98
 
 
 
 
 
 
 
 
71b21b4
7fcd908
71b21b4
678ab98
 
 
71b21b4
678ab98
 
 
 
7fcd908
678ab98
 
 
 
 
 
7fcd908
678ab98
 
 
 
 
f4bb0af
678ab98
74ba6ce
678ab98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fcd908
678ab98
 
 
7fcd908
678ab98
 
 
 
 
 
 
 
 
 
 
fda00e3
678ab98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fcd908
678ab98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fcd908
678ab98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fcd908
678ab98
 
 
 
 
 
 
 
 
 
 
 
 
 
71b21b4
678ab98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78be7e8
678ab98
 
 
 
71b21b4
678ab98
 
 
 
78be7e8
678ab98
 
 
78be7e8
678ab98
 
 
 
54875b8
678ab98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fda00e3
678ab98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fcd908
678ab98
 
 
 
7fcd908
678ab98
fda00e3
678ab98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fda00e3
678ab98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74ba6ce
678ab98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74ba6ce
678ab98
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard
import copy
import random
import time
import re

# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
    loras = json.load(f)

# Initialize the base model for SDXL
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "stabilityai/stable-diffusion-xl-base-1.0"

# Load SDXL pipelines
pipe = StableDiffusionXLPipeline.from_pretrained(
    base_model,
    torch_dtype=dtype,
    use_safetensors=True
).to(device)

pipe_i2i = StableDiffusionXLImg2ImgPipeline.from_pretrained(
    base_model,
    torch_dtype=dtype,
    use_safetensors=True
).to(device)

MAX_SEED = 2**32 - 1

# Custom SDXL generation function for live preview
@torch.inference_mode()
def generate_sdxl_images(
    pipe,
    prompt: str,
    height: int = 1024,
    width: int = 1024,
    num_inference_steps: int = 50,
    guidance_scale: float = 7.5,
    generator: Optional[torch.Generator] = None,
    output_type: str = "pil",
):
    # Encode prompt
    prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = pipe.encode_prompt(
        prompt=prompt,
        num_images_per_prompt=1,
        do_classifier_free_guidance=True,
    )
    # Prepare latents
    latents = pipe.prepare_latents(
        batch_size=1,
        num_channels_latents=pipe.unet.config.in_channels,
        height=height,
        width=width,
        dtype=prompt_embeds.dtype,
        device=pipe.device,
        generator=generator,
    )
    # Prepare timesteps
    pipe.scheduler.set_timesteps(num_inference_steps, device=pipe.device)
    timesteps = pipe.scheduler.timesteps
    # Prepare guidance
    do_classifier_free_guidance = guidance_scale > 1.0
    if do_classifier_free_guidance:
        prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
        pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds])
    # Denoising loop
    for i, t in enumerate(timesteps):
        # Expand latents for guidance
        latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
        # Predict noise
        noise_pred = pipe.unet(
            latent_model_input,
            t,
            encoder_hidden_states=prompt_embeds,
            added_cond_kwargs={"text_embeds": pooled_prompt_embeds},
        ).sample
        # Perform guidance
        if do_classifier_free_guidance:
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
        # Step scheduler
        latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample
        # Decode latents to image every step
        image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0]
        yield pipe.image_processor.postprocess(image, output_type=output_type)[0]
    # Final image
    image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0]
    yield pipe.image_processor.postprocess(image, output_type=output_type)[0]

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        return self
    
    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")

def update_selection(evt: gr.SelectData, width, height):
    selected_lora = loras[evt.index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    lora_repo = selected_lora["repo"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
    if "aspect" in selected_lora:
        if selected_lora["aspect"] == "portrait":
            width = 768
            height = 1024
        elif selected_lora["aspect"] == "landscape":
            width = 1024
            height = 768
        else:
            width = 1024
            height = 1024
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        evt.index,
        width,
        height,
    )

@spaces.GPU(duration=70)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
    pipe.to("cuda")
    generator = torch.Generator(device="cuda").manual_seed(seed)
    with calculateDuration("Generating image"):
        for img in generate_sdxl_images(
            pipe,
            prompt=prompt_mash,
            num_inference_steps=steps,
            guidance_scale=cfg_scale,
            width=width,
            height=height,
            generator=generator,
            output_type="pil",
        ):
            yield img

def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
    generator = torch.Generator(device="cuda").manual_seed(seed)
    pipe_i2i.to("cuda")
    image_input = load_image(image_input_path)
    final_image = pipe_i2i(
        prompt=prompt_mash,
        image=image_input,
        strength=image_strength,
        num_inference_steps=steps,
        guidance_scale=cfg_scale,
        width=width,
        height=height,
        generator=generator,
        output_type="pil",
    ).images[0]
    return final_image 

@spaces.GPU(duration=70)
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
    if selected_index is None:
        raise gr.Error("You must select a LoRA before proceeding.")
    selected_lora = loras[selected_index]
    lora_path = selected_lora["repo"]
    trigger_word = selected_lora["trigger_word"]
    if trigger_word:
        if "trigger_position" in selected_lora and selected_lora["trigger_position"] == "prepend":
            prompt_mash = f"{trigger_word} {prompt}"
        else:
            prompt_mash = f"{prompt} {trigger_word}"
    else:
        prompt_mash = prompt

    # Unload previous LoRA weights
    with calculateDuration("Unloading LoRA"):
        pipe.unload_lora_weights()
        pipe_i2i.unload_lora_weights()
        
    # Load LoRA weights and set adapter scale
    with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
        weight_name = selected_lora.get("weights", None)
        adapter_name = "lora"
        pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=adapter_name)
        pipe.set_adapters([adapter_name], [lora_scale])
        pipe_i2i.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=adapter_name)
        pipe_i2i.set_adapters([adapter_name], [lora_scale])
                
    # Set random seed
    with calculateDuration("Randomizing seed"):
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
            
    if image_input is not None:
        final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
        yield final_image, seed, gr.update(visible=False)
    else:
        image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
        final_image = None
        step_counter = 0
        for image in image_generator:
            step_counter += 1
            final_image = image
            progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
            yield image, seed, gr.update(value=progress_bar, visible=True)
        yield final_image, seed, gr.update(value=progress_bar, visible=False)

def get_huggingface_safetensors(link):
    split_link = link.split("/")
    if len(split_link) != 2:
        raise Exception("Invalid Hugging Face repository link format.")

    # Load model card
    model_card = ModelCard.load(link)
    base_model = model_card.data.get("base_model")
    print(base_model)

    # Validate model type for SDXL
    if base_model != "stabilityai/stable-diffusion-xl-base-1.0":
        raise Exception("Not an SDXL LoRA!")

    # Extract image and trigger word
    image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
    trigger_word = model_card.data.get("instance_prompt", "")
    image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None

    # Initialize Hugging Face file system
    fs = HfFileSystem()
    try:
        list_of_files = fs.ls(link, detail=False)
        safetensors_name = None
        highest_trained_file = None
        highest_steps = -1
        last_safetensors_file = None
        step_pattern = re.compile(r"_0{3,}\d+")  # Detects step count `_000...`

        for file in list_of_files:
            filename = file.split("/")[-1]
            if filename.endswith(".safetensors"):
                last_safetensors_file = filename
                match = step_pattern.search(filename)
                if not match:
                    safetensors_name = filename
                    break
                else:
                    steps = int(match.group().lstrip("_"))
                    if steps > highest_steps:
                        highest_trained_file = filename
                        highest_steps = steps
            if not image_url and filename.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
                image_url = f"https://huggingface.co/{link}/resolve/main/{filename}"

        if not safetensors_name:
            safetensors_name = highest_trained_file if highest_trained_file else last_safetensors_file
        if not safetensors_name:
            raise Exception("No valid *.safetensors file found in the repository.")
    except Exception as e:
        print(e)
        raise Exception("You didn't include a valid Hugging Face repository with a *.safetensors LoRA")

    return split_link[1], link, safetensors_name, trigger_word, image_url

def check_custom_model(link):
    if link.startswith("https://"):
        if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
            link_split = link.split("huggingface.co/")
            return get_huggingface_safetensors(link_split[1])
    else: 
        return get_huggingface_safetensors(link)

def add_custom_lora(custom_lora):
    global loras
    if custom_lora:
        try:
            title, repo, path, trigger_word, image = check_custom_model(custom_lora)
            print(f"Loaded custom LoRA: {repo}")
            card = f'''
            <div class="custom_lora_card">
              <span>Loaded custom LoRA:</span>
              <div class="card_internal">
                <img src="{image}" />
                <div>
                    <h3>{title}</h3>
                    <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
                </div>
              </div>
            </div>
            '''
            existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
            if not existing_item_index:
                new_item = {
                    "image": image,
                    "title": title,
                    "repo": repo,
                    "weights": path,
                    "trigger_word": trigger_word
                }
                print(new_item)
                existing_item_index = len(loras)
                loras.append(new_item)
            return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
        except Exception as e:
            gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-SDXL LoRA")
            return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-SDXL LoRA"), gr.update(visible=True), gr.update(), "", None, ""
    else:
        return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""

def remove_custom_lora():
    return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""

run_lora.zerogpu = True

css = '''
#gen_btn{height: 100%}
#gen_column{align-self: stretch}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#progress{height:30px}
#progress .generating{display:none}
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
'''
font = [gr.themes.GoogleFont("Source Sans Pro"), "Arial", "sans-serif"]
with gr.Blocks(theme=gr.themes.Soft(font=font), css=css, delete_cache=(60, 60)) as app:
    title = gr.HTML(
        """<h1>SDXL LoRA DLC</h1>""",
        elem_id="title",
    )
    selected_index = gr.State(None)
    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
        with gr.Column(scale=1, elem_id="gen_column"):
            generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
    with gr.Row():
        with gr.Column():
            selected_info = gr.Markdown("")
            gallery = gr.Gallery(
                [(item["image"], item["title"]) for item in loras],
                label="LoRA Gallery",
                allow_preview=False,
                columns=3,
                elem_id="gallery",
                show_share_button=False
            )
            with gr.Group():
                custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="username/sdxl-lora-model")
                gr.Markdown("[Check the list of SDXL LoRAs](https://huggingface.co/models?other=base_model:stabilityai/stable-diffusion-xl-base-1.0)", elem_id="lora_list")
            custom_lora_info = gr.HTML(visible=False)
            custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
        with gr.Column():
            progress_bar = gr.Markdown(elem_id="progress", visible=False)
            result = gr.Image(label="Generated Image")

    with gr.Row():
        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                input_image = gr.Image(label="Input image", type="filepath")
                image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
            with gr.Column():
                with gr.Row():
                    cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=30)
                
                with gr.Row():
                    width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
                    height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
                
                with gr.Row():
                    randomize_seed = gr.Checkbox(True, label="Randomize seed")
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
                    lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=1.0)

    gallery.select(
        update_selection,
        inputs=[width, height],
        outputs=[prompt, selected_info, selected_index, width, height]
    )
    custom_lora.input(
        add_custom_lora,
        inputs=[custom_lora],
        outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
    )
    custom_lora_button.click(
        remove_custom_lora,
        outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
    )
    gr.on(
        triggers=[generate_button.click, prompt.submit],
        fn=run_lora,
        inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
        outputs=[result, seed, progress_bar]
    )

app.queue()
app.launch()