File size: 4,714 Bytes
0c1b8f7
0ba4242
 
0c1b8f7
10cb780
0c1b8f7
0ba4242
c863607
0c1b8f7
0ba4242
 
 
806d92e
1d74de7
0ba4242
 
 
 
ab6b5e5
0ba4242
 
 
 
 
ab6b5e5
0ba4242
ab6b5e5
0ba4242
 
 
ab6b5e5
 
 
0ba4242
 
 
 
 
 
 
 
 
47473ae
1d74de7
 
 
47473ae
c863607
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ba4242
ab6b5e5
c863607
 
 
0ba4242
 
 
 
 
7a2c608
c863607
 
 
 
 
 
 
 
0ba4242
a23a8fc
 
 
 
 
 
 
0ba4242
f8af0ad
0ba4242
 
a23a8fc
0ba4242
 
 
 
 
 
 
 
1d74de7
0ba4242
 
 
be810f5
f8af0ad
0ba4242
 
 
7a2c608
ab6b5e5
 
0ba4242
 
 
c863607
0ba4242
 
ab6b5e5
0ba4242
ab6b5e5
0ba4242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab6b5e5
0ba4242
 
 
 
 
 
 
 
 
 
 
 
c863607
 
 
0ba4242
 
 
 
 
 
 
47473ae
 
0c1b8f7
c863607
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
from collections.abc import Iterator
from threading import Thread
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from typing import List, Dict, Optional, Tuple

DESCRIPTION = """
# QwQ Distill
"""

css = '''
h1 {
  text-align: center;
  display: block;
}

#duplicate-button {
  margin: auto;
  color: #fff;
  background: #1565c0;
  border-radius: 100vh;
}
'''

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model_id = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
model.config.sliding_window = 4096
model.eval()

# Set the pad token ID if it's not already set
if tokenizer.pad_token_id is None:
    tokenizer.pad_token_id = tokenizer.eos_token_id

# Define roles for the chat
class Role:
    SYSTEM = "system"
    USER = "user"
    ASSISTANT = "assistant"

# Default system message
default_system = "You are a helpful assistant."

def clear_session() -> List:
    return "", []

def modify_system_session(system: str) -> Tuple[str, str, List]:
    if system is None or len(system) == 0:
        system = default_system
    return system, system, []

def history_to_messages(history: List, system: str) -> List[Dict]:
    messages = [{'role': Role.SYSTEM, 'content': system}]
    for h in history:
        messages.append({'role': Role.USER, 'content': h[0]})
        messages.append({'role': Role.ASSISTANT, 'content': h[1]})
    return messages

@spaces.GPU(duration=120)
def generate(
    query: Optional[str],
    history: Optional[List],
    system: str,
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    if query is None:
        query = ''
    if history is None:
        history = []

    # Convert history to messages
    messages = history_to_messages(history, system)
    messages.append({'role': Role.USER, 'content': query})

    # Apply chat template and tokenize
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

    # Set up the streamer for real-time text generation
    streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        **model_inputs,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
        pad_token_id=tokenizer.pad_token_id,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    # Stream the output tokens
    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


demo = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Textbox(label="System Message", value=default_system, lines=2),
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.2,
        ),
    ],
    stop_btn=None,
    examples=[
        ["Write a Python function to reverses a string if it's length is a multiple of 4."],
        ["What is the volume of a pyramid with a rectangular base?"],
        ["Explain the difference between List comprehension and Lambda in Python."],
        ["What happens when the sun goes down?"],
    ],
    cache_examples=False,
    description=DESCRIPTION,
    css=css,
    fill_height=True,
)


if __name__ == "__main__":
    demo.queue(max_size=20).launch(share=True)