Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,714 Bytes
0c1b8f7 0ba4242 0c1b8f7 10cb780 0c1b8f7 0ba4242 c863607 0c1b8f7 0ba4242 806d92e 1d74de7 0ba4242 ab6b5e5 0ba4242 ab6b5e5 0ba4242 ab6b5e5 0ba4242 ab6b5e5 0ba4242 47473ae 1d74de7 47473ae c863607 0ba4242 ab6b5e5 c863607 0ba4242 7a2c608 c863607 0ba4242 a23a8fc 0ba4242 f8af0ad 0ba4242 a23a8fc 0ba4242 1d74de7 0ba4242 be810f5 f8af0ad 0ba4242 7a2c608 ab6b5e5 0ba4242 c863607 0ba4242 ab6b5e5 0ba4242 ab6b5e5 0ba4242 ab6b5e5 0ba4242 c863607 0ba4242 47473ae 0c1b8f7 c863607 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import os
from collections.abc import Iterator
from threading import Thread
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from typing import List, Dict, Optional, Tuple
DESCRIPTION = """
# QwQ Distill
"""
css = '''
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: #fff;
background: #1565c0;
border-radius: 100vh;
}
'''
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.config.sliding_window = 4096
model.eval()
# Set the pad token ID if it's not already set
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
# Define roles for the chat
class Role:
SYSTEM = "system"
USER = "user"
ASSISTANT = "assistant"
# Default system message
default_system = "You are a helpful assistant."
def clear_session() -> List:
return "", []
def modify_system_session(system: str) -> Tuple[str, str, List]:
if system is None or len(system) == 0:
system = default_system
return system, system, []
def history_to_messages(history: List, system: str) -> List[Dict]:
messages = [{'role': Role.SYSTEM, 'content': system}]
for h in history:
messages.append({'role': Role.USER, 'content': h[0]})
messages.append({'role': Role.ASSISTANT, 'content': h[1]})
return messages
@spaces.GPU(duration=120)
def generate(
query: Optional[str],
history: Optional[List],
system: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
if query is None:
query = ''
if history is None:
history = []
# Convert history to messages
messages = history_to_messages(history, system)
messages.append({'role': Role.USER, 'content': query})
# Apply chat template and tokenize
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Set up the streamer for real-time text generation
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
**model_inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
pad_token_id=tokenizer.pad_token_id,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Stream the output tokens
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(label="System Message", value=default_system, lines=2),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Write a Python function to reverses a string if it's length is a multiple of 4."],
["What is the volume of a pyramid with a rectangular base?"],
["Explain the difference between List comprehension and Lambda in Python."],
["What happens when the sun goes down?"],
],
cache_examples=False,
description=DESCRIPTION,
css=css,
fill_height=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True) |