File size: 4,386 Bytes
0c1b8f7
 
 
32d8e74
ea9ba29
32d8e74
48a6837
ef0f895
32d8e74
 
0ba4242
0c1b8f7
0ba4242
ef0f895
0ba4242
806d92e
0ba4242
 
 
ab6b5e5
 
 
761375e
0ba4242
 
 
 
 
 
 
47473ae
32d8e74
ef0f895
 
 
 
32d8e74
ef0f895
 
 
 
 
 
 
 
 
 
 
48a6837
 
ab6b5e5
7d0f94b
 
0ba4242
 
 
 
 
32d8e74
 
9118d80
32d8e74
ea9ba29
32d8e74
 
48a6837
32d8e74
 
0ba4242
32d8e74
7d0f94b
32d8e74
7d0f94b
 
 
32d8e74
7d0f94b
0ba4242
a29c2e7
32d8e74
 
 
 
 
 
 
 
 
 
 
0ba4242
 
be810f5
0ba4242
 
 
ab6b5e5
32d8e74
ea9ba29
32d8e74
ea9ba29
32d8e74
 
 
48a6837
ea9ba29
48a6837
bce38cc
0ba4242
 
 
ea9ba29
 
 
 
 
0ba4242
 
 
db9acad
ef0f895
48a6837
32d8e74
0ba4242
 
7d0f94b
0ba4242
 
 
47473ae
0c1b8f7
56cff44
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import gradio as gr
import torch
import tempfile
import asyncio
import edge_tts
import spaces
from pydub import AudioSegment
from threading import Thread
from collections.abc import Iterator
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

DESCRIPTION = """
# QwQ Tiny with Edge TTS (MP3 Output)
"""

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
model.eval()

async def text_to_speech(text: str) -> str:
    """Converts text to speech using Edge TTS, converts WAV to MP3, and returns the MP3 file path."""
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_wav:
        wav_path = tmp_wav.name
    
    communicate = edge_tts.Communicate(text)
    await communicate.save(wav_path)

    # Convert WAV to MP3
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_mp3:
        mp3_path = tmp_mp3.name
    
    audio = AudioSegment.from_wav(wav_path)
    audio.export(mp3_path, format="mp3")

    os.remove(wav_path)  # Delete the original WAV file
    return mp3_path  # Return the MP3 file path
    
@spaces.GPU
def generate(
    message: str,
    chat_history: list[dict],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str] | str:
    
    is_tts = message.strip().startswith("@tts")
    is_text_only = message.strip().startswith("@text")

    # Remove special tags
    if is_tts:
        message = message.replace("@tts", "").strip()
    elif is_text_only:
        message = message.replace("@text", "").strip()

    conversation = [*chat_history, {"role": "user", "content": message}]
    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")

    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")

    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = {
        "input_ids": input_ids,
        "streamer": streamer,
        "max_new_tokens": max_new_tokens,
        "do_sample": True,
        "top_p": top_p,
        "top_k": top_k,
        "temperature": temperature,
        "num_beams": 1,
        "repetition_penalty": repetition_penalty,
    }
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)

    final_output = "".join(outputs)

    # If TTS requested, generate speech and return audio file
    if is_tts:
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
        audio_path = loop.run_until_complete(text_to_speech(final_output))
        return audio_path  

    return final_output  # 

demo = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
        gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
        gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
        gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
        gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
    ],
    stop_btn=None,
    examples=[
        ["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"],
        ["@text What is AI?"],
        ["@tts Explain Newton's third law of motion."],
        ["@text Rewrite the following sentence in passive voice: 'The dog chased the cat.'"],
    ],
    cache_examples=False,
    type="messages",
    description=DESCRIPTION,
    fill_height=True,
)

if __name__ == "__main__":
    demo.queue(max_size=20).launch()