File size: 14,848 Bytes
fe8a556
 
 
 
 
 
 
 
 
 
 
 
 
 
9074b0b
fe8a556
 
 
 
 
 
8530a0c
 
fe8a556
 
 
 
c678d8f
 
fe8a556
 
c337e98
 
 
fe8a556
c337e98
 
 
 
 
 
 
 
 
 
7a60f0d
 
 
 
8530a0c
fe8a556
 
7a60f0d
fe8a556
 
 
 
 
 
 
 
7a60f0d
fe8a556
 
 
 
 
 
 
 
7a60f0d
fe8a556
 
 
 
 
 
741065a
 
4fe3125
7a60f0d
741bf21
 
 
25e9aad
741bf21
 
 
7a60f0d
8530a0c
 
 
9074b0b
8530a0c
c337e98
 
 
8530a0c
7a60f0d
 
 
 
 
 
 
 
 
 
8530a0c
9074b0b
fe8a556
 
 
 
 
 
 
 
 
8530a0c
 
fe8a556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8530a0c
 
 
 
7a60f0d
8530a0c
 
 
 
7a60f0d
 
 
8530a0c
 
 
 
 
 
7a60f0d
 
fe8a556
 
7a60f0d
fe8a556
8530a0c
fe8a556
 
8530a0c
 
fe8a556
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8530a0c
 
 
 
 
 
 
 
 
7a60f0d
8530a0c
 
7a60f0d
8530a0c
 
 
7a60f0d
8530a0c
7a60f0d
 
 
8530a0c
 
 
 
 
 
7a60f0d
 
fe8a556
 
7a60f0d
fe8a556
8530a0c
 
7a60f0d
8530a0c
 
7a60f0d
fe8a556
8530a0c
 
 
 
fe8a556
 
 
8530a0c
 
 
fe8a556
 
 
 
 
 
 
 
 
 
 
 
 
0435164
580d01c
 
0435164
580d01c
fe8a556
 
 
 
 
 
 
 
 
8530a0c
 
 
fe8a556
 
 
 
aa9c407
fe8a556
 
 
 
 
 
 
8530a0c
fe8a556
 
 
 
8530a0c
 
fe8a556
 
 
 
 
 
 
 
 
9e6361b
e064f1b
8530a0c
9e6361b
f3eccec
e064f1b
fe8a556
cb73066
fe8a556
8530a0c
985bee6
 
 
8530a0c
 
fe8a556
 
 
 
 
 
 
 
 
 
 
 
c337e98
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
import requests

from transformers import (
    Qwen2VLForConditionalGeneration,
    Qwen2_5_VLForConditionalGeneration,
    AutoProcessor,
    TextIteratorStreamer,
    AutoModel,
    AutoTokenizer,
)
from transformers.image_utils import load_image

# Constants for text generation
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 2048
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

# Let the environment (e.g., Hugging Face Spaces) determine the device.
# This avoids conflicts with the CUDA environment setup by the platform.
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
    print("current device:", torch.cuda.current_device())
    print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))

print("Using device:", device)
# --- Model Loading ---

# To address the warnings, we add `use_fast=False` to ensure we use the
# processor version the model was originally saved with.

# Load DREX-062225-exp
MODEL_ID_X = "prithivMLmods/DREX-062225-exp"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True, use_fast=False)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_X,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load typhoon-ocr-3b
MODEL_ID_T = "scb10x/typhoon-ocr-3b"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True, use_fast=False)
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_T,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load olmOCR-7B-0225-preview
MODEL_ID_O = "allenai/olmOCR-7B-0225-preview"
processor_o = AutoProcessor.from_pretrained(MODEL_ID_O, trust_remote_code=True, use_fast=False)
model_o = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID_O,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load Lumian-VLR-7B-Thinking
MODEL_ID_J = "prithivMLmods/Lumian-VLR-7B-Thinking"
SUBFOLDER = "think-preview"
processor_j = AutoProcessor.from_pretrained(MODEL_ID_J, trust_remote_code=True, subfolder=SUBFOLDER, use_fast=False)
model_j = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_J,
    trust_remote_code=True,
    subfolder=SUBFOLDER,
    torch_dtype=torch.float16
).to(device).eval()

# Load openbmb/MiniCPM-V-4
MODEL_ID_V4 = 'openbmb/MiniCPM-V-4'
model_v4 = AutoModel.from_pretrained(
    MODEL_ID_V4,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16,
    # Using 'sdpa' can sometimes cause issues in certain environments,
    # letting transformers choose the default is safer.
    # attn_implementation='sdpa'
).eval().to(device)
tokenizer_v4 = AutoTokenizer.from_pretrained(MODEL_ID_V4, trust_remote_code=True, use_fast=False)

# --- Refactored Model Dictionary ---
# This simplifies model selection in the generation functions.
MODELS = {
    "DREX-062225-7B-exp": (processor_x, model_x),
    "Typhoon-OCR-3B": (processor_t, model_t),
    "olmOCR-7B-0225-preview": (processor_o, model_o),
    "Lumian-VLR-7B-Thinking": (processor_j, model_j),
}


def downsample_video(video_path):
    """
    Downsamples the video to evenly spaced frames.
    Each frame is returned as a PIL image along with its timestamp.
    """
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    # Use a maximum of 10 frames to avoid excessive memory usage
    frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """
    Generates responses using the selected model for image input.
    """
    if image is None:
        yield "Please upload an image.", "Please upload an image."
        return

    # Handle MiniCPM-V-4 separately due to its different API
    if model_name == "openbmb/MiniCPM-V-4":
        msgs = [{'role': 'user', 'content': [image, text]}]
        try:
            answer = model_v4.chat(
                image=image.convert('RGB'), msgs=msgs, tokenizer=tokenizer_v4,
                max_new_tokens=max_new_tokens, temperature=temperature,
                top_p=top_p, repetition_penalty=repetition_penalty,
            )
            yield answer, answer
        except Exception as e:
            yield f"Error: {e}", f"Error: {e}"
        return

    # Use the dictionary for other models
    if model_name not in MODELS:
        yield "Invalid model selected.", "Invalid model selected."
        return
    processor, model = MODELS[model_name]

    messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": text}]}]
    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(
        text=[prompt_full], images=[image], return_tensors="pt", padding=True,
        truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH
    ).to(device)
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer, buffer

@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """
    Generates responses using the selected model for video input.
    """
    if video_path is None:
        yield "Please upload a video.", "Please upload a video."
        return

    frames_with_ts = downsample_video(video_path)
    if not frames_with_ts:
        yield "Could not process video.", "Could not process video."
        return

    # Handle MiniCPM-V-4 separately
    if model_name == "openbmb/MiniCPM-V-4":
        images = [frame for frame, ts in frames_with_ts]
        # For video, the prompt includes the text and then all the image frames
        content = [text] + images
        msgs = [{'role': 'user', 'content': content}]
        try:
            # The .chat API still takes a single image argument, typically the first frame
            answer = model_v4.chat(
                image=images[0].convert('RGB'), msgs=msgs, tokenizer=tokenizer_v4,
                max_new_tokens=max_new_tokens, temperature=temperature,
                top_p=top_p, repetition_penalty=repetition_penalty,
            )
            yield answer, answer
        except Exception as e:
            yield f"Error: {e}", f"Error: {e}"
        return

    # Use the dictionary for other models
    if model_name not in MODELS:
        yield "Invalid model selected.", "Invalid model selected."
        return
    processor, model = MODELS[model_name]

    # Prepare messages for Qwen-style models
    messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
    images_for_processor = []
    for frame, timestamp in frames_with_ts:
        messages[0]["content"].append({"type": "image", "image": frame})
        images_for_processor.append(frame)

    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(
        text=[prompt_full], images=images_for_processor, return_tensors="pt", padding=True,
        truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH
    ).to(device)
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {
        **inputs, "streamer": streamer, "max_new_tokens": max_new_tokens,
        "do_sample": True, "temperature": temperature, "top_p": top_p,
        "top_k": top_k, "repetition_penalty": repetition_penalty,
    }
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer, buffer


# Define examples for image and video inference
image_examples = [
    ["Describe the safety measures in the image. Conclude (Safe / Unsafe)..", "images/5.jpg"],
    ["Convert this page to doc [markdown] precisely.", "images/3.png"],
    ["Convert this page to doc [markdown] precisely.", "images/4.png"],
    ["Explain the creativity in the image.", "images/6.jpg"],
    ["Convert this page to doc [markdown] precisely.", "images/1.png"],
    ["Convert chart to OTSL.", "images/2.png"]
]

video_examples = [
    ["Explain the video in detail.", "videos/2.mp4"],
    ["Explain the ad in detail.", "videos/1.mp4"]
]

css = """
.submit-btn { background-color: #2980b9 !important; color: white !important; }
.submit-btn:hover { background-color: #3498db !important; }
.canvas-output { border: 2px solid #4682B4; border-radius: 10px; padding: 20px; }
"""

# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown("# **[Multimodal VLM Thinking](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**")
    with gr.Row():
        with gr.Column():
            with gr.Tabs():
                with gr.TabItem("Image Inference"):
                    image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    image_upload = gr.Image(type="pil", label="Image")
                    image_submit = gr.Button("Submit", elem_classes="submit-btn")
                    gr.Examples(examples=image_examples, inputs=[image_query, image_upload])
                with gr.TabItem("Video Inference"):
                    video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    video_upload = gr.Video(label="Video")
                    video_submit = gr.Button("Submit", elem_classes="submit-btn")
                    gr.Examples(examples=video_examples, inputs=[video_query, video_upload])

            with gr.Accordion("Advanced options", open=False):
                max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
                temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
                top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
                top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
                repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)

        with gr.Column():
            with gr.Column(elem_classes="canvas-output"):
                gr.Markdown("## Output")
                output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=3, show_copy_button=True)
                with gr.Accordion("(Result.md)", open=False):
                    markdown_output = gr.Markdown(label="(Result.Md)")
            model_choice = gr.Radio(
                choices=["Lumian-VLR-7B-Thinking", "openbmb/MiniCPM-V-4", "Typhoon-OCR-3B", "DREX-062225-7B-exp", "olmOCR-7B-0225-preview"],
                label="Select Model",
                value="Lumian-VLR-7B-Thinking"
            )
            gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-VLM-Thinking/discussions)")
            gr.Markdown("> [MiniCPM-V 4.0](https://huggingface.co/openbmb/MiniCPM-V-4) is the latest efficient model in the MiniCPM-V series. The model is built based on SigLIP2-400M and MiniCPM4-3B with a total of 4.1B parameters. It inherits the strong single-image, multi-image and video understanding performance of MiniCPM-V 2.6 with largely improved efficiency. [Lumian-VLR-7B-Thinking](https://huggingface.co/prithivMLmods/Lumian-VLR-7B-Thinking) is a high-fidelity vision-language reasoning model built on Qwen2.5-VL-7B-Instruct, designed for fine-grained multimodal understanding, video reasoning, and document comprehension through explicit grounded reasoning.")
            gr.Markdown("> [olmOCR-7B-0225-preview](https://huggingface.co/allenai/olmOCR-7B-0225-preview) is a 7B parameter open large model designed for OCR tasks with robust text extraction, especially in complex document layouts. [Typhoon-ocr-3b](https://huggingface.co/scb10x/typhoon-ocr-3b) is a 3B parameter OCR model optimized for efficient and accurate optical character recognition in challenging conditions.")
            gr.Markdown("> [DREX-062225-exp](https://huggingface.co/prithivMLmods/DREX-062225-exp) is an experimental multimodal model emphasizing strong document reading and extraction capabilities combined with vision-language understanding to support detailed document parsing and reasoning tasks.")
            gr.Markdown("> ⚠️ Note: Video inference performance can vary significantly between models.")

    image_submit.click(
        fn=generate_image,
        inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=[output, markdown_output]
    )
    video_submit.click(
        fn=generate_video,
        inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=[output, markdown_output]
    )

if __name__ == "__main__":
    demo.queue(max_size=50).launch(share=True, ssr_mode=False, show_error=True)