File size: 11,315 Bytes
722d796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import os
import random
import uuid
from typing import Tuple
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

MAX_SEED = np.iinfo(np.int32).max
USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0

if torch.cuda.is_available():
    pipe = StableDiffusionXLPipeline.from_pretrained(
        "SG161222/RealVisXL_V4.0_Lightning",
        torch_dtype=torch.float16,
        use_safetensors=True,
    )
    pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)

    LORA_OPTIONS = {
        "Realism (face/character)πŸ‘¦πŸ»": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"),
        "Pixar (art/toons)πŸ™€": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"),
        "Photoshoot (camera/film)πŸ“Έ": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"),
        "Clothing (hoodies/pant/shirts)πŸ‘”": ("prithivMLmods/Canopus-Clothing-Adp-LoRA", "Canopus-Dress-Clothing-LoRA.safetensors", "clth"),
        "Interior Architecture (house/hotel)🏠": ("prithivMLmods/Canopus-Interior-Architecture-0.1", "Canopus-Interior-Architecture-0.1δ.safetensors", "arch"),
        "Fashion Product (wearing/usable)πŸ‘œ": ("prithivMLmods/Canopus-Fashion-Product-Dilation", "Canopus-Fashion-Product-Dilation.safetensors", "fashion"),
        "Minimalistic Image (minimal/detailed)🏞️": ("prithivMLmods/Pegasi-Minimalist-Image-Style", "Pegasi-Minimalist-Image-Style.safetensors", "minimalist"),
        "Modern Clothing (trend/new)πŸ‘•": ("prithivMLmods/Canopus-Modern-Clothing-Design", "Canopus-Modern-Clothing-Design.safetensors", "mdrnclth"),
        "Animaliea (farm/wild)🫎": ("prithivMLmods/Canopus-Animaliea-Artism", "Canopus-Animaliea-Artism.safetensors", "Animaliea"),
        "Liquid Wallpaper (minimal/illustration)πŸ–ΌοΈ": ("prithivMLmods/Canopus-Liquid-Wallpaper-Art", "Canopus-Liquid-Wallpaper-Minimalize-LoRA.safetensors", "liquid"),
        "Canes Cars (realistic/futurecars)🚘": ("prithivMLmods/Canes-Cars-Model-LoRA", "Canes-Cars-Model-LoRA.safetensors", "car"),
        "Pencil Art (characteristic/creative)✏️": ("prithivMLmods/Canopus-Pencil-Art-LoRA", "Canopus-Pencil-Art-LoRA.safetensors", "Pencil Art"),
        "Art Minimalistic (paint/semireal)🎨": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"),

    }

    for model_name, weight_name, adapter_name in LORA_OPTIONS.values():
        pipe.load_lora_weights(model_name, weight_name=weight_name, adapter_name=adapter_name)
    pipe.to("cuda")

style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
]

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}

DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())

def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    if style_name in styles:
        p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    else:
        p, n = styles[DEFAULT_STYLE_NAME]

    if not negative:
        negative = ""
    return p.replace("{prompt}", positive), n + negative

@spaces.GPU(duration=180, enable_queue=True)
def generate(

    prompt: str,

    negative_prompt: str = "",

    use_negative_prompt: bool = False,

    seed: int = 0,

    width: int = 1024,

    height: int = 1024,

    guidance_scale: float = 3,

    randomize_seed: bool = False,

    style_name: str = DEFAULT_STYLE_NAME,

    lora_model: str = "Realism (face/character)πŸ‘¦πŸ»",

    progress=gr.Progress(track_tqdm=True),

):
    seed = int(randomize_seed_fn(seed, randomize_seed))

    positive_prompt, effective_negative_prompt = apply_style(style_name, prompt, negative_prompt)
    
    if not use_negative_prompt:
        effective_negative_prompt = ""  # type: ignore

    model_name, weight_name, adapter_name = LORA_OPTIONS[lora_model]
    pipe.set_adapters(adapter_name)

    images = pipe(
        prompt=positive_prompt,
        negative_prompt=effective_negative_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=20,
        num_images_per_prompt=1,
        cross_attention_kwargs={"scale": 0.65},
        output_type="pil",
    ).images
    image_paths = [save_image(img) for img in images]
    return image_paths, seed

examples = [
    "realism, man in the style of dark beige and brown, uhd image, youthful protagonists, nonrepresentational",
    "pixar, a young man with light brown wavy hair and light brown eyes sitting in an armchair and looking directly at the camera, pixar style, disney pixar, office background",
    "hoodie, front view, capture a urban style, superman hoodie, technical materials, fabric small point label on text blue theory, with a raised collar, fabric is a light yellow, low angle to capture the hoodies form and detailing, f/5.6 to focus on the hoodies craftsmanship, solid grey background, studio light setting, with batman logo.",
]


css = '''

.gradio-container{max-width: 888px !important}

h1{text-align:center}

.submit-btn {

    background-color: #ecde2c  !important;

    color: white !important;

}

.submit-btn:hover {

    background-color: #ffec00  !important;

}

'''

def load_predefined_images():
    predefined_images = [
        "assets/1.png",
        "assets/2.png",
        "assets/3.png",
        "assets/4.png",
        "assets/5.png",
        "assets/6.png",
        "assets/7.png",
        "assets/8.png",
        "assets/9.png",
    ]
    return predefined_images

with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    with gr.Row():
        with gr.Column(scale=1):
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt with resp. tag!",
                container=False,
            )
            run_button = gr.Button("Generate  as  (1024 x 1024)πŸŽƒ", scale=0, elem_classes="submit-btn")

            with gr.Row(visible=True):
                model_choice = gr.Dropdown(
                    label="LoRA Selection",
                    choices=list(LORA_OPTIONS.keys()),
                    value="Realism (face/character)πŸ‘¦πŸ»")
            
            with gr.Accordion("Advanced options", open=True):
                use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True, visible=True)
                negative_prompt = gr.Text(
                    label="Negative prompt",
                    lines=4,
                    max_lines=6,
                    value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
                    placeholder="Enter a negative prompt",
                    visible=True,
                )
                with gr.Row():
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=0,
                        visible=True
                    )
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                with gr.Row(visible=True):
                    width = gr.Slider(
                        label="Width",
                        minimum=512,
                        maximum=2048,
                        step=8,
                        value=1024,
                    )
                    height = gr.Slider(
                        label="Height",
                        minimum=512,
                        maximum=2048,
                        step=8,
                        value=1024,
                    )
                    
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=0.1,
                    maximum=20.0,
                    step=0.1,
                    value=3.0,
                )

                style_selection = gr.Radio(
                    show_label=True,
                    container=True,
                    interactive=True,
                    choices=STYLE_NAMES,
                    value=DEFAULT_STYLE_NAME,
                    label="Quality Style",
                )

        with gr.Column(scale=2):
            result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)

            gr.Examples(
                examples=examples,
                inputs=prompt,
                outputs=[result, seed],
                fn=generate,
                cache_examples=False,
            )
            
            predefined_gallery = gr.Gallery(
                label="Image Gallery",
                columns=3,
                show_label=False,
                value=load_predefined_images()
            )

        use_negative_prompt.change(
            fn=lambda x: gr.update(visible=x),
            inputs=use_negative_prompt,
            outputs=negative_prompt,
            api_name=False,
        )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale,
            randomize_seed,
            style_selection,
            model_choice,
        ],
        outputs=[result, seed],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=30).launch()