File size: 5,157 Bytes
3d312b2
 
 
 
 
 
 
 
41395df
 
3d312b2
516f346
3d312b2
 
 
516f346
3d312b2
 
 
 
 
516f346
 
 
3d312b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cc1db6
3d312b2
516f346
eb55a66
 
3d312b2
 
 
516f346
3d312b2
 
 
516f346
3d312b2
 
516f346
3d312b2
 
 
 
 
 
516f346
3d312b2
 
 
 
 
 
516f346
 
 
3d312b2
516f346
a26c578
3d312b2
 
 
 
 
 
 
 
516f346
 
3d312b2
 
 
 
 
 
 
 
 
 
 
516f346
3d312b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
516f346
3d312b2
 
 
 
 
 
 
516f346
3d312b2
 
 
516f346
3d312b2
 
 
 
 
516f346
 
3d312b2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os

import streamlit as st
from crewai import Crew
from crewai_tools import PDFSearchTool, ScrapeWebsiteTool, SerperDevTool
from dotenv import load_dotenv
from PIL import Image

from src.agents import MultiAgents
from src.tasks import MultiTasks

# Load environment variables
load_dotenv()
os.environ["OPENAI_MODEL_NAME"] = "gpt-3.5-turbo"

# Initialize agents and tasks
agents = MultiAgents()
tasks = MultiTasks()
search_tool = SerperDevTool()
scrape_tool = ScrapeWebsiteTool()

# Load icon image
image_icon = Image.open("src/assistente-de-robo.png")
image_icon = image_icon.resize((100, 100))


def save_uploaded_file(uploaded_file):
    temp_dir = "tempDir"
    if not os.path.exists(temp_dir):
        os.makedirs(temp_dir)
    temp_file_path = os.path.join(temp_dir, uploaded_file.name)
    with open(temp_file_path, "wb") as f:
        f.write(uploaded_file.getbuffer())
    return temp_file_path


def read_file(file_path):
    pdf_search_tool = PDFSearchTool(pdf=file_path)
    return pdf_search_tool


def main():
    with st.sidebar:
        st.title("Hello, I'm Taylor AI!\nYour Career Consultant:")
        st.write(
            """I am here to help you highlight your skills and
            experiences for the job market.I am currently using the gpt-3.
            5-turbo model."""
        )

        st.session_state.openai_api_key = st.text_input(
            "Enter your OpenAI token:", type="password"
        )

        st.session_state.serper_api_key = st.text_input(
            "Enter your SERPER token:", type="password"
        )

        st.image(image_icon, use_column_width=True)

        if st.session_state.openai_api_key:
            os.environ["OPENAI_API_KEY"] = st.session_state.openai_api_key
        if st.session_state.serper_api_key:
            os.environ["SERPER_API_KEY"] = st.session_state.serper_api_key

    st.header("Career Consultant")

    if "result_done" not in st.session_state:
        st.session_state.result_done = False
    if "result" not in st.session_state:
        st.session_state.result = None

    candidate_name = st.text_input("Enter your name:")
    job_posting_url = st.text_input("Enter the job posting URL:")
    github_url = st.text_input("Enter your GitHub URL:")
    uploaded_resume = st.file_uploader(
        "Please upload your resume in PDF format",
        type=["pdf"],
    )

    if uploaded_resume:
        if uploaded_resume.type == "application/pdf":
            temp_file_path = save_uploaded_file(uploaded_resume)
            pdf_search_tool = read_file(temp_file_path)
            os.remove(temp_file_path)

    if st.button("Perform Analysis"):
        # Agents
        researcher = agents.researcher(search_tool, scrape_tool)
        profile_creator = agents.profile_creator(
            search_tool, scrape_tool, pdf_search_tool
        )
        professional_consultant = agents.professional_consultant(
            search_tool, scrape_tool, pdf_search_tool
        )
        interview_preparer = agents.interview_preparer(
            search_tool, scrape_tool, pdf_search_tool
        )

        # Tasks
        research_task = tasks.research_task(researcher, job_posting_url)
        profile_manager_task = tasks.profile_manager_task(
            profile_creator, github_url, candidate_name
        )
        resume_adaptation_task = tasks.resume_adaptation_task(
            candidate_name,
            professional_consultant,
            profile_manager_task,
            profile_manager_task,
        )
        interview_preparation_task = tasks.interview_preparation_task(
            interview_preparer,
            research_task,
            profile_manager_task,
            resume_adaptation_task,
        )

        crew = Crew(
            agents=[
                researcher,
                profile_creator,
                professional_consultant,
                interview_preparer,
            ],
            tasks=[
                research_task,
                profile_manager_task,
                resume_adaptation_task,
                interview_preparation_task,
            ],
            verbose=True,
        )

        inputs = {
            "candidate_name": candidate_name,
            "github_url": github_url,
            "job_posting_url": job_posting_url,
            "uploaded_resume": uploaded_resume,
        }

        # Execute the analysis
        result = crew.kickoff(inputs=inputs)
        st.session_state.result_done = True
        st.session_state.result = result
        st.session_state.show_success = False

        st.write(st.session_state.result)
        resume_file_path = os.path.basename(
            f"custom_resume_{candidate_name}.md"
        )
        with open(resume_file_path, "rb") as file:
            btn = st.download_button(
                label="Download Generated Resume",
                data=file,
                file_name=os.path.basename(resume_file_path),
                mime="text/plain",
            )
            if btn:
                st.success("Download Started!")
        st.success(f"Analysis completed! Thank you, {candidate_name}!")


if __name__ == "__main__":
    main()