File size: 5,197 Bytes
3d312b2
 
 
 
 
 
 
 
41395df
 
3d312b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a26c578
 
3d312b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os

import streamlit as st
from crewai import Crew
from crewai_tools import PDFSearchTool, ScrapeWebsiteTool, SerperDevTool
from dotenv import load_dotenv
from PIL import Image

from src.agents import MultiAgents
from src.tasks import MultiTasks

# Carregar variáveis de ambiente
load_dotenv()
os.environ["OPENAI_MODEL_NAME"] = "gpt-3.5-turbo"


# Inicializar agentes e tarefas
agents = MultiAgents()
tasks = MultiTasks()
search_tool = SerperDevTool()
scrape_tool = ScrapeWebsiteTool()

# Carregar imagem do ícone
imagem_icon = Image.open("src/assistente-de-robo.png")
imagem_icon = imagem_icon.resize((100, 100))


def save_uploaded_file(uploaded_file):
    temp_dir = "tempDir"
    if not os.path.exists(temp_dir):
        os.makedirs(temp_dir)
    temp_file_path = os.path.join(temp_dir, uploaded_file.name)
    with open(temp_file_path, "wb") as f:
        f.write(uploaded_file.getbuffer())
    return temp_file_path


def read_file(file_path):
    pdf_search_tool = PDFSearchTool(pdf=file_path)
    return pdf_search_tool


def main():
    with st.sidebar:
        st.title("Olá, Sou o Taylor IA, seu Consultor de carreira:")
        st.write(
            """Estou aqui para ajudá-lo a destacar suas habilidades e
            experiências para o mercado de trabalho."""
        )

        st.session_state.openai_api_key = st.text_input(
            "Insira seu token da OpenAI:", type="password"
        )

        st.session_state.serper_api_key = st.text_input(
            "Insira seu token da SERPER:", type="password"
        )

        st.image(imagem_icon, use_column_width=True)

        if st.session_state.openai_api_key:
            os.environ["OPENAI_API_KEY"] = st.session_state.openai_api_key
        if st.session_state.serper_api_key:
            os.environ["SERPER_API_KEY"] = st.session_state.serper_api_key

    st.header("Consultor de Carreira")

    if "result_done" not in st.session_state:
        st.session_state.result_done = False
    if "result" not in st.session_state:
        st.session_state.result = None

    candidate_name = st.text_input("Digite seu nome:")
    job_posting_url = st.text_input("Informe a URL da vaga desejada:")
    github_url = st.text_input("Informe a URL do seu Github:")
    uploaded_resume = st.file_uploader(
        "Por favor, faça o upload do seu currículo nos formatos PDF",
        type=["pdf"],
    )

    if uploaded_resume:
        if uploaded_resume.type == "application/pdf":
            temp_file_path = save_uploaded_file(uploaded_resume)
            pdf_search_tool = read_file(temp_file_path)
            os.remove(temp_file_path)

    if st.button("Realizar Análise"):
        # Agentes
        researcher = agents.researcher(search_tool, scrape_tool)
        profile_creator = agents.profile_creator(
            search_tool, scrape_tool, pdf_search_tool
        )
        professional_consultant = agents.professional_consultant(
            search_tool, scrape_tool, pdf_search_tool
        )
        interview_preparer = agents.interview_preparer(
            search_tool, scrape_tool, pdf_search_tool
        )

        # Tarefas
        research_task = tasks.research_task(researcher, job_posting_url)
        profile_manager_task = tasks.profile_manager_task(
            profile_creator, github_url, candidate_name
        )
        resume_adaptation_task = tasks.resume_adaptation_task(
            candidate_name,
            professional_consultant,
            profile_manager_task,
            profile_manager_task,
        )
        interview_preparation_task = tasks.interview_preparation_task(
            interview_preparer,
            research_task,
            profile_manager_task,
            resume_adaptation_task,
        )

        crew = Crew(
            agents=[
                researcher,
                profile_creator,
                professional_consultant,
                interview_preparer,
            ],
            tasks=[
                research_task,
                profile_manager_task,
                resume_adaptation_task,
                interview_preparation_task,
            ],
            verbose=True,
        )

        inputs = {
            "candidate_name": candidate_name,
            "github_url": github_url,
            "job_posting_url": job_posting_url,
            "uploaded_resume": uploaded_resume,
        }

        # Executar a análise
        result = crew.kickoff(inputs=inputs)
        st.session_state.result_done = True
        st.session_state.result = result
        st.session_state.show_success = False

        st.write(st.session_state.result)
        resume_file_path = os.path.basename(
            f"curriculo_personalizado_{candidate_name}.md"
        )
        with open(resume_file_path, "rb") as file:
            btn = st.download_button(
                label="Baixar Currículo Gerado",
                data=file,
                file_name=os.path.basename(resume_file_path),
                mime="text/plain",
            )
            if btn:
                st.success("Download Iniciado!")
        st.success(f"Análise concluída! Obrigado, {candidate_name}!")


if __name__ == "__main__":
    main()