File size: 5,948 Bytes
95015ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from flask import Flask, request, redirect, url_for, render_template, send_file, Response
import os
import cv2
import numpy as np
from tensorflow.keras.models import model_from_json
import tensorflow as tf

# Constants
TARGET_SIZE = (48, 48)
BATCH_SIZE = 64
EMOTION_DICT = {0: "Angry", 1: "Disgusted", 2: "Fearful", 3: "Happy", 4: "Neutral", 5: "Sad", 6: "Surprised"}

app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'uploads'
app.config['PROCESSED_FOLDER'] = 'processed'
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
os.makedirs(app.config['PROCESSED_FOLDER'], exist_ok=True)

def load_model():
    with open('model/emotion_model.json', 'r') as json_file:
        loaded_model_json = json_file.read()
    try:
        emotion_model = model_from_json(loaded_model_json, custom_objects={'Sequential': tf.keras.models.Sequential})
    except TypeError:
        emotion_model = model_from_json(loaded_model_json, custom_objects={'Sequential': tf.keras.models.Sequential})
    emotion_model.load_weights("model/emotion_model.h5")
    print("Loaded model from disk")
    return emotion_model

emotion_model = load_model()

def process_image(file_path, output_path):
    img = cv2.imread(file_path)
    if img is None:
        print(f"Error loading image {file_path}")
        return

    gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    face_detector = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_default.xml')
    faces = face_detector.detectMultiScale(gray_img, scaleFactor=1.3, minNeighbors=5)
    
    for (x, y, w, h) in faces:
        cv2.rectangle(img, (x, y-50), (x+w, y+h+10), (0, 255, 0), 4)
        roi_gray_frame = gray_img[y:y + h, x:x + w]
        cropped_img = np.expand_dims(np.expand_dims(cv2.resize(roi_gray_frame, TARGET_SIZE), -1), 0)
        
        emotion_prediction = emotion_model.predict(cropped_img)
        maxindex = int(np.argmax(emotion_prediction))
        cv2.putText(img, EMOTION_DICT[maxindex], (x+5, y-20), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)
    
    cv2.imwrite(output_path, img)

def process_video(file_path, output_path):
    cap = cv2.VideoCapture(file_path)
    face_detector = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_default.xml')
    fourcc = cv2.VideoWriter_fourcc(*'XVID')
    out = cv2.VideoWriter(output_path, fourcc, 20.0, (int(cap.get(3)), int(cap.get(4))))

    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        num_faces = face_detector.detectMultiScale(gray_frame, scaleFactor=1.3, minNeighbors=5)

        for (x, y, w, h) in num_faces:
            cv2.rectangle(frame, (x, y-50), (x+w, y+h+10), (0, 255, 0), 4)
            roi_gray_frame = gray_frame[y:y + h, x:x + w]
            cropped_img = np.expand_dims(np.expand_dims(cv2.resize(roi_gray_frame, TARGET_SIZE), -1), 0)

            emotion_prediction = emotion_model.predict(cropped_img)
            maxindex = int(np.argmax(emotion_prediction))
            cv2.putText(frame, EMOTION_DICT[maxindex], (x+5, y-20), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)

        out.write(frame)

    cap.release()
    out.release()
    cv2.destroyAllWindows()

def gen_frames():
    cap = cv2.VideoCapture(0)
    face_detector = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_default.xml')
    
    while True:
        success, frame = cap.read()
        if not success:
            break
        else:
            gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            faces = face_detector.detectMultiScale(gray_frame, scaleFactor=1.3, minNeighbors=5)

            for (x, y, w, h) in faces:
                cv2.rectangle(frame, (x, y-50), (x+w, y+h+10), (0, 255, 0), 4)
                roi_gray_frame = gray_frame[y:y + h, x:x + w]
                cropped_img = np.expand_dims(np.expand_dims(cv2.resize(roi_gray_frame, TARGET_SIZE), -1), 0)

                emotion_prediction = emotion_model.predict(cropped_img)
                maxindex = int(np.argmax(emotion_prediction))
                cv2.putText(frame, EMOTION_DICT[maxindex], (x+5, y-20), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)

            ret, buffer = cv2.imencode('.jpg', frame)
            frame = buffer.tobytes()
            yield (b'--frame\r\n'
                   b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')

    cap.release()

@app.route('/')
def index():
    return render_template('camera.html')

@app.route('/upload', methods=['POST'])
def upload_file():
    if 'file' not in request.files:
        return redirect(request.url)
    file = request.files['file']
    if file.filename == '':
        return redirect(request.url)
    if file:
        file_path = os.path.join(app.config['UPLOAD_FOLDER'], file.filename)
        file.save(file_path)
        output_path = os.path.join(app.config['PROCESSED_FOLDER'], file.filename)
        
        if file.filename.lower().endswith(('png', 'jpg', 'jpeg')):
            process_image(file_path, output_path)
        elif file.filename.lower().endswith(('mp4', 'avi', 'mov', 'mkv')):
            process_video(file_path, output_path)
        else:
            return 'Unsupported file type'
        
        return redirect(url_for('download_file', filename=file.filename))
    return 'File upload failed'

@app.route('/download/<filename>')
def download_file(filename):
    return send_file(os.path.join(app.config['PROCESSED_FOLDER'], filename), as_attachment=True)

@app.route('/video_feed')
def video_feed():
    return Response(gen_frames(), mimetype='multipart/x-mixed-replace; boundary=frame')

@app.route('/camera')
def camera():
    return render_template('camera.html')

if __name__ == "__main__":
    app.run(debug=True)