File size: 16,831 Bytes
db6a3b7
3057b36
7d475c1
db6a3b7
f7d8058
690b53e
db6a3b7
9880f3d
7d475c1
db6a3b7
9880f3d
db6a3b7
 
9880f3d
db6a3b7
 
 
bd46f72
d38a3fc
 
 
 
d7b1815
bd46f72
cd41f5f
16e4e4e
cd41f5f
 
 
f7d8058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0ffc9a
cd41f5f
 
b7b00e2
db6a3b7
f782ff0
 
 
 
 
db6a3b7
 
f782ff0
db6a3b7
 
f782ff0
db6a3b7
db894f7
cd41f5f
db6a3b7
 
b7b00e2
 
f782ff0
 
 
 
b7b00e2
 
f782ff0
b7b00e2
 
f782ff0
b7b00e2
 
 
 
 
 
 
9880f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b00e2
9880f3d
 
cd41f5f
 
f782ff0
 
 
 
 
 
 
 
 
 
 
cd41f5f
 
 
 
f782ff0
 
cd41f5f
b7b00e2
cd41f5f
 
 
 
 
b7b00e2
f782ff0
 
cd41f5f
d38a3fc
 
 
 
db6a3b7
d38a3fc
8990ae3
d38a3fc
 
 
 
db6a3b7
d38a3fc
 
 
 
db6a3b7
f782ff0
8990ae3
b7b00e2
 
 
 
8990ae3
b7b00e2
 
 
 
 
 
 
 
 
 
 
d38a3fc
b7b00e2
 
8990ae3
b7b00e2
 
 
 
 
 
 
 
 
 
d38a3fc
 
f782ff0
 
d38a3fc
 
 
 
 
 
 
db6a3b7
d38a3fc
cd41f5f
d38a3fc
 
 
db6a3b7
 
b7b00e2
 
 
f782ff0
 
 
 
 
b7b00e2
 
f782ff0
 
b7b00e2
 
f782ff0
b7b00e2
16e4e4e
b7b00e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f782ff0
 
 
 
 
 
 
 
 
 
 
b7b00e2
 
 
 
 
 
 
 
 
 
 
 
cd41f5f
7d475c1
4670c79
f782ff0
 
 
4670c79
 
 
7d475c1
db6a3b7
 
b7b00e2
 
4670c79
b7b00e2
4670c79
b7b00e2
 
 
 
 
bd46f72
 
 
 
 
 
690b53e
 
bd46f72
 
690b53e
 
b7b00e2
bd46f72
 
 
 
f782ff0
 
 
b7b00e2
 
 
db6a3b7
 
 
b7b00e2
db894f7
b7b00e2
 
 
 
 
2e78ab8
db6a3b7
 
b7b00e2
db6a3b7
 
 
 
 
 
2e7f188
cd41f5f
db6a3b7
 
 
b7b00e2
 
 
 
 
 
 
 
 
db6a3b7
 
cd41f5f
f7d8058
cd41f5f
b7b00e2
 
 
 
 
 
 
 
 
db6a3b7
 
 
cd41f5f
db6a3b7
b7b00e2
 
 
 
 
db6a3b7
 
cd41f5f
 
 
 
f782ff0
2a2c1e0
d38a3fc
db6a3b7
b7b00e2
f782ff0
db6a3b7
 
 
f782ff0
 
db6a3b7
b7b00e2
 
 
 
 
 
 
 
 
db6a3b7
 
f782ff0
 
db6a3b7
 
 
 
 
 
 
c666caf
 
 
 
8bd98db
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D

import threading, time, shutil, os
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils


MAX_SEED = np.iinfo(np.int32).max
# Custom save directory for GLB files
CUSTOM_SAVE_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'outputs')
os.makedirs(CUSTOM_SAVE_DIR, exist_ok=True)



def start_session(req: gr.Request):
    user_dir = os.path.join(CUSTOM_SAVE_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    
def end_session(req: gr.Request):
    """
    Safe session cleanup for Hugging Face Spaces.
    - Runs asynchronously (won’t block Gradio)
    - Only touches your custom /outputs/ folder
    - Waits a few seconds to avoid race conditions
    """
    def delayed_cleanup():
        time.sleep(5)  # allow Gradio to finish file reads
        user_dir = os.path.join(CUSTOM_SAVE_DIR, str(req.session_hash))
        try:
            # safety check: never delete anything outside outputs/
            if not user_dir.startswith(CUSTOM_SAVE_DIR):
                print(f"[Session Cleanup Warning] Unsafe path skipped: {user_dir}")
                return
    
            if os.path.exists(user_dir):
                shutil.rmtree(user_dir, ignore_errors=True)
                print(f"[Session Cleanup] Deleted {user_dir}")
            else:
                print(f"[Session Cleanup] Directory already gone: {user_dir}")
    
        except Exception as e:
            print(f"[Session Cleanup Warning] {e}")
    
    # run cleanup in background so Gradio can unload cleanly
    threading.Thread(target=delayed_cleanup, daemon=True).start()



def preprocess_image(image: Image.Image) -> Image.Image:
    """
    Preprocess the input image for 3D generation.
    
    This function is called when a user uploads an image or selects an example.
    It applies background removal and other preprocessing steps necessary for
    optimal 3D model generation.

    Args:
        image (Image.Image): The input image from the user

    Returns:
        Image.Image: The preprocessed image ready for 3D generation
    """
    processed_image = pipeline.preprocess_image(image)
    return processed_image


def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
    """
    Preprocess a list of input images for multi-image 3D generation.
    
    This function is called when users upload multiple images in the gallery.
    It processes each image to prepare them for the multi-image 3D generation pipeline.
    
    Args:
        images (List[Tuple[Image.Image, str]]): The input images from the gallery
        
    Returns:
        List[Image.Image]: The preprocessed images ready for 3D generation
    """
    images = [image[0] for image in images]
    processed_images = [pipeline.preprocess_image(image) for image in images]
    return processed_images


def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
    }
    
    
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    
    return gs, mesh


def get_seed(randomize_seed: bool, seed: int) -> int:
    """
    Get the random seed for generation.
    
    This function is called by the generate button to determine whether to use
    a random seed or the user-specified seed value.
    
    Args:
        randomize_seed (bool): Whether to generate a random seed
        seed (int): The user-specified seed value
        
    Returns:
        int: The seed to use for generation
    """
    return np.random.randint(0, MAX_SEED) if randomize_seed else seed


@spaces.GPU(duration=120)
def generate_and_extract_glb(
    image: Image.Image,
    multiimages: List[Tuple[Image.Image, str]],
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    multiimage_algo: Literal["multidiffusion", "stochastic"],
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> str:
    """
    Generate the 3D model and save only the GLB file to a custom folder.
    The GLB filename matches the input image filename (or first image if multi-image).
    """
    # Derive base filename from the first image in the batch
    if image:
        base_filename = getattr(image, "filename", None) or "generated_model"
    else:
        # Use the first uploaded image filename if available
        base_filename = getattr(multiimages[0][0], "filename", None) or "generated_model"

    # Strip directories and extension to get a clean name
    base_name = os.path.splitext(os.path.basename(base_filename))[0]
    glb_filename = f"{base_name}.glb"
    glb_path = os.path.join(CUSTOM_SAVE_DIR, glb_filename)

    # Generate 3D model
    if image:
        outputs = pipeline.run(
            image,
            seed=seed,
            formats=["gaussian", "mesh"],
            preprocess_image=True,
            sparse_structure_sampler_params={
                "steps": ss_sampling_steps,
                "cfg_strength": ss_guidance_strength,
            },
            slat_sampler_params={
                "steps": slat_sampling_steps,
                "cfg_strength": slat_guidance_strength,
            },
        )
    else:
        outputs = pipeline.run_multi_image(
            [img[0] for img in multiimages],
            seed=seed,
            formats=["gaussian", "mesh"],
            preprocess_image=True,
            sparse_structure_sampler_params={
                "steps": ss_sampling_steps,
                "cfg_strength": ss_guidance_strength,
            },
            slat_sampler_params={
                "steps": slat_sampling_steps,
                "cfg_strength": slat_guidance_strength,
            },
            mode=multiimage_algo,
        )

    # Export GLB file to custom folder
    gs = outputs['gaussian'][0]
    mesh = outputs['mesh'][0]
    glb = postprocessing_utils.to_glb(
        gs,
        mesh,
        simplify=mesh_simplify,
        texture_size=texture_size,
        verbose=False
    )
    glb.export(glb_path)

    torch.cuda.empty_cache()
    print(f"[Saved GLB] {glb_path}")
    return glb_path



@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
    """
    Extract a Gaussian splatting file from the generated 3D model.
    
    This function is called when the user clicks "Extract Gaussian" button.
    It converts the 3D model state into a .ply file format containing
    Gaussian splatting data for advanced 3D applications.

    Args:
        state (dict): The state of the generated 3D model containing Gaussian data
        req (gr.Request): Gradio request object for session management

    Returns:
        Tuple[str, str]: Paths to the extracted Gaussian file (for display and download)
    """
    user_dir = os.path.join(CUSTOM_SAVE_DIR, str(req.session_hash))
    gs, _ = unpack_state(state)
    gaussian_path = os.path.join(user_dir, 'sample.ply')
    gs.save_ply(gaussian_path)
    torch.cuda.empty_cache()
    return gaussian_path, gaussian_path


def prepare_multi_example() -> List[Image.Image]:
    multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
    images = []
    for case in multi_case:
        _images = []
        for i in range(1, 4):
            img = Image.open(f'assets/example_multi_image/{case}_{i}.png')
            W, H = img.size
            img = img.resize((int(W / H * 512), 512))
            _images.append(np.array(img))
        images.append(Image.fromarray(np.concatenate(_images, axis=1)))
    return images


def split_image(image: Image.Image) -> List[Image.Image]:
    """
    Split a multi-view image into separate view images.
    
    This function is called when users select multi-image examples that contain
    multiple views in a single concatenated image. It automatically splits them
    based on alpha channel boundaries and preprocesses each view.
    
    Args:
        image (Image.Image): A concatenated image containing multiple views
        
    Returns:
        List[Image.Image]: List of individual preprocessed view images
    """
    image = np.array(image)
    alpha = image[..., 3]
    alpha = np.any(alpha>0, axis=0)
    start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
    end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
    images = []
    for s, e in zip(start_pos, end_pos):
        images.append(Image.fromarray(image[:, s:e+1]))
    return [preprocess_image(image) for image in images]


with gr.Blocks(delete_cache=(600, 600)) as demo:
    gr.Markdown("""
    ## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
    * Upload an image and click "Generate & Extract GLB" to create a 3D asset and automatically extract the GLB file.
    * If you want the Gaussian file as well, click "Extract Gaussian" after generation.
    * If the image has alpha channel, it will be used as the mask. Otherwise, we use `rembg` to remove the background.
    
    ✨New: 1) Experimental multi-image support. 2) Gaussian file extraction.
    """)
    
    with gr.Row():
        with gr.Column():
            with gr.Tabs() as input_tabs:
                with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
                    image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
                with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
                    multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
                    gr.Markdown("""
                        Input different views of the object in separate images. 
                        
                        *NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
                    """)
            
            with gr.Accordion(label="Generation Settings", open=False):
                seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                gr.Markdown("Stage 1: Sparse Structure Generation")
                with gr.Row():
                    ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
                    ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                gr.Markdown("Stage 2: Structured Latent Generation")
                with gr.Row():
                    slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
                    slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
                multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
            
            with gr.Accordion(label="GLB Extraction Settings", open=False):
                mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
                texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)

            generate_btn = gr.Button("Generate & Extract GLB", variant="primary")
            extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
            gr.Markdown("""
                        *NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
                        """)

        with gr.Column():
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
            
            with gr.Row():
                download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
                download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)  
    
    is_multiimage = gr.State(False)
    output_buf = gr.State()

    # Example images at the bottom of the page
    with gr.Row() as single_image_example:
        examples = gr.Examples(
            examples=[
                f'assets/example_image/{image}'
                for image in os.listdir("assets/example_image")
            ],
            inputs=[image_prompt],
            fn=preprocess_image,
            outputs=[image_prompt],
            run_on_click=True,
            examples_per_page=64,
        )
    with gr.Row(visible=False) as multiimage_example:
        examples_multi = gr.Examples(
            examples=prepare_multi_example(),
            inputs=[image_prompt],
            fn=split_image,
            outputs=[multiimage_prompt],
            run_on_click=True,
            examples_per_page=8,
        )

    # Handlers
    demo.load(start_session)
    demo.unload(end_session)
    
    single_image_input_tab.select(
        lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]),
        outputs=[is_multiimage, single_image_example, multiimage_example]
    )
    multiimage_input_tab.select(
        lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]),
        outputs=[is_multiimage, single_image_example, multiimage_example]
    )
    
    image_prompt.upload(
        preprocess_image,
        inputs=[image_prompt],
        outputs=[image_prompt],
    )
    multiimage_prompt.upload(
        preprocess_images,
        inputs=[multiimage_prompt],
        outputs=[multiimage_prompt],
    )

    generate_btn.click(
        get_seed,
        inputs=[randomize_seed, seed],
        outputs=[seed],
    ).then(
        generate_and_extract_glb,
        inputs=[image_prompt, multiimage_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo, mesh_simplify, texture_size],
        outputs=[download_glb],
    ).then(
        lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
        outputs=[extract_gs_btn, download_glb],
    )

    video_output.clear(
        lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False), gr.Button(interactive=False)]),
        outputs=[extract_gs_btn, download_glb, download_gs],
    )
    
    extract_gs_btn.click(
        extract_gaussian,
        inputs=[output_buf],
        outputs=[model_output, download_gs],
    ).then(
        lambda: gr.Button(interactive=True),
        outputs=[download_gs],
    )

    model_output.clear(
        lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
        outputs=[download_glb, download_gs],
    )
    

# Launch the Gradio app
if __name__ == "__main__":
    pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
    pipeline.cuda()
    try:
        pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))    # Preload rembg
    except:
        pass
    demo.launch(
        mcp_server=True,
        show_error=True   # ✅ Enable verbose backend error reporting
    )