Spaces:
Sleeping
Sleeping
File size: 16,831 Bytes
db6a3b7 3057b36 7d475c1 db6a3b7 f7d8058 690b53e db6a3b7 9880f3d 7d475c1 db6a3b7 9880f3d db6a3b7 9880f3d db6a3b7 bd46f72 d38a3fc d7b1815 bd46f72 cd41f5f 16e4e4e cd41f5f f7d8058 b0ffc9a cd41f5f b7b00e2 db6a3b7 f782ff0 db6a3b7 f782ff0 db6a3b7 f782ff0 db6a3b7 db894f7 cd41f5f db6a3b7 b7b00e2 f782ff0 b7b00e2 f782ff0 b7b00e2 f782ff0 b7b00e2 9880f3d b7b00e2 9880f3d cd41f5f f782ff0 cd41f5f f782ff0 cd41f5f b7b00e2 cd41f5f b7b00e2 f782ff0 cd41f5f d38a3fc db6a3b7 d38a3fc 8990ae3 d38a3fc db6a3b7 d38a3fc db6a3b7 f782ff0 8990ae3 b7b00e2 8990ae3 b7b00e2 d38a3fc b7b00e2 8990ae3 b7b00e2 d38a3fc f782ff0 d38a3fc db6a3b7 d38a3fc cd41f5f d38a3fc db6a3b7 b7b00e2 f782ff0 b7b00e2 f782ff0 b7b00e2 f782ff0 b7b00e2 16e4e4e b7b00e2 f782ff0 b7b00e2 cd41f5f 7d475c1 4670c79 f782ff0 4670c79 7d475c1 db6a3b7 b7b00e2 4670c79 b7b00e2 4670c79 b7b00e2 bd46f72 690b53e bd46f72 690b53e b7b00e2 bd46f72 f782ff0 b7b00e2 db6a3b7 b7b00e2 db894f7 b7b00e2 2e78ab8 db6a3b7 b7b00e2 db6a3b7 2e7f188 cd41f5f db6a3b7 b7b00e2 db6a3b7 cd41f5f f7d8058 cd41f5f b7b00e2 db6a3b7 cd41f5f db6a3b7 b7b00e2 db6a3b7 cd41f5f f782ff0 2a2c1e0 d38a3fc db6a3b7 b7b00e2 f782ff0 db6a3b7 f782ff0 db6a3b7 b7b00e2 db6a3b7 f782ff0 db6a3b7 c666caf 8bd98db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import threading, time, shutil, os
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
MAX_SEED = np.iinfo(np.int32).max
# Custom save directory for GLB files
CUSTOM_SAVE_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'outputs')
os.makedirs(CUSTOM_SAVE_DIR, exist_ok=True)
def start_session(req: gr.Request):
user_dir = os.path.join(CUSTOM_SAVE_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
"""
Safe session cleanup for Hugging Face Spaces.
- Runs asynchronously (won’t block Gradio)
- Only touches your custom /outputs/ folder
- Waits a few seconds to avoid race conditions
"""
def delayed_cleanup():
time.sleep(5) # allow Gradio to finish file reads
user_dir = os.path.join(CUSTOM_SAVE_DIR, str(req.session_hash))
try:
# safety check: never delete anything outside outputs/
if not user_dir.startswith(CUSTOM_SAVE_DIR):
print(f"[Session Cleanup Warning] Unsafe path skipped: {user_dir}")
return
if os.path.exists(user_dir):
shutil.rmtree(user_dir, ignore_errors=True)
print(f"[Session Cleanup] Deleted {user_dir}")
else:
print(f"[Session Cleanup] Directory already gone: {user_dir}")
except Exception as e:
print(f"[Session Cleanup Warning] {e}")
# run cleanup in background so Gradio can unload cleanly
threading.Thread(target=delayed_cleanup, daemon=True).start()
def preprocess_image(image: Image.Image) -> Image.Image:
"""
Preprocess the input image for 3D generation.
This function is called when a user uploads an image or selects an example.
It applies background removal and other preprocessing steps necessary for
optimal 3D model generation.
Args:
image (Image.Image): The input image from the user
Returns:
Image.Image: The preprocessed image ready for 3D generation
"""
processed_image = pipeline.preprocess_image(image)
return processed_image
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
"""
Preprocess a list of input images for multi-image 3D generation.
This function is called when users upload multiple images in the gallery.
It processes each image to prepare them for the multi-image 3D generation pipeline.
Args:
images (List[Tuple[Image.Image, str]]): The input images from the gallery
Returns:
List[Image.Image]: The preprocessed images ready for 3D generation
"""
images = [image[0] for image in images]
processed_images = [pipeline.preprocess_image(image) for image in images]
return processed_images
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh
def get_seed(randomize_seed: bool, seed: int) -> int:
"""
Get the random seed for generation.
This function is called by the generate button to determine whether to use
a random seed or the user-specified seed value.
Args:
randomize_seed (bool): Whether to generate a random seed
seed (int): The user-specified seed value
Returns:
int: The seed to use for generation
"""
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
@spaces.GPU(duration=120)
def generate_and_extract_glb(
image: Image.Image,
multiimages: List[Tuple[Image.Image, str]],
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
multiimage_algo: Literal["multidiffusion", "stochastic"],
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> str:
"""
Generate the 3D model and save only the GLB file to a custom folder.
The GLB filename matches the input image filename (or first image if multi-image).
"""
# Derive base filename from the first image in the batch
if image:
base_filename = getattr(image, "filename", None) or "generated_model"
else:
# Use the first uploaded image filename if available
base_filename = getattr(multiimages[0][0], "filename", None) or "generated_model"
# Strip directories and extension to get a clean name
base_name = os.path.splitext(os.path.basename(base_filename))[0]
glb_filename = f"{base_name}.glb"
glb_path = os.path.join(CUSTOM_SAVE_DIR, glb_filename)
# Generate 3D model
if image:
outputs = pipeline.run(
image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=True,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
else:
outputs = pipeline.run_multi_image(
[img[0] for img in multiimages],
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=True,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
mode=multiimage_algo,
)
# Export GLB file to custom folder
gs = outputs['gaussian'][0]
mesh = outputs['mesh'][0]
glb = postprocessing_utils.to_glb(
gs,
mesh,
simplify=mesh_simplify,
texture_size=texture_size,
verbose=False
)
glb.export(glb_path)
torch.cuda.empty_cache()
print(f"[Saved GLB] {glb_path}")
return glb_path
@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
"""
Extract a Gaussian splatting file from the generated 3D model.
This function is called when the user clicks "Extract Gaussian" button.
It converts the 3D model state into a .ply file format containing
Gaussian splatting data for advanced 3D applications.
Args:
state (dict): The state of the generated 3D model containing Gaussian data
req (gr.Request): Gradio request object for session management
Returns:
Tuple[str, str]: Paths to the extracted Gaussian file (for display and download)
"""
user_dir = os.path.join(CUSTOM_SAVE_DIR, str(req.session_hash))
gs, _ = unpack_state(state)
gaussian_path = os.path.join(user_dir, 'sample.ply')
gs.save_ply(gaussian_path)
torch.cuda.empty_cache()
return gaussian_path, gaussian_path
def prepare_multi_example() -> List[Image.Image]:
multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
images = []
for case in multi_case:
_images = []
for i in range(1, 4):
img = Image.open(f'assets/example_multi_image/{case}_{i}.png')
W, H = img.size
img = img.resize((int(W / H * 512), 512))
_images.append(np.array(img))
images.append(Image.fromarray(np.concatenate(_images, axis=1)))
return images
def split_image(image: Image.Image) -> List[Image.Image]:
"""
Split a multi-view image into separate view images.
This function is called when users select multi-image examples that contain
multiple views in a single concatenated image. It automatically splits them
based on alpha channel boundaries and preprocesses each view.
Args:
image (Image.Image): A concatenated image containing multiple views
Returns:
List[Image.Image]: List of individual preprocessed view images
"""
image = np.array(image)
alpha = image[..., 3]
alpha = np.any(alpha>0, axis=0)
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
images = []
for s, e in zip(start_pos, end_pos):
images.append(Image.fromarray(image[:, s:e+1]))
return [preprocess_image(image) for image in images]
with gr.Blocks(delete_cache=(600, 600)) as demo:
gr.Markdown("""
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
* Upload an image and click "Generate & Extract GLB" to create a 3D asset and automatically extract the GLB file.
* If you want the Gaussian file as well, click "Extract Gaussian" after generation.
* If the image has alpha channel, it will be used as the mask. Otherwise, we use `rembg` to remove the background.
✨New: 1) Experimental multi-image support. 2) Gaussian file extraction.
""")
with gr.Row():
with gr.Column():
with gr.Tabs() as input_tabs:
with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
gr.Markdown("""
Input different views of the object in separate images.
*NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
""")
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
generate_btn = gr.Button("Generate & Extract GLB", variant="primary")
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
gr.Markdown("""
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
""")
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
with gr.Row():
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
is_multiimage = gr.State(False)
output_buf = gr.State()
# Example images at the bottom of the page
with gr.Row() as single_image_example:
examples = gr.Examples(
examples=[
f'assets/example_image/{image}'
for image in os.listdir("assets/example_image")
],
inputs=[image_prompt],
fn=preprocess_image,
outputs=[image_prompt],
run_on_click=True,
examples_per_page=64,
)
with gr.Row(visible=False) as multiimage_example:
examples_multi = gr.Examples(
examples=prepare_multi_example(),
inputs=[image_prompt],
fn=split_image,
outputs=[multiimage_prompt],
run_on_click=True,
examples_per_page=8,
)
# Handlers
demo.load(start_session)
demo.unload(end_session)
single_image_input_tab.select(
lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]),
outputs=[is_multiimage, single_image_example, multiimage_example]
)
multiimage_input_tab.select(
lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]),
outputs=[is_multiimage, single_image_example, multiimage_example]
)
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[image_prompt],
)
multiimage_prompt.upload(
preprocess_images,
inputs=[multiimage_prompt],
outputs=[multiimage_prompt],
)
generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
).then(
generate_and_extract_glb,
inputs=[image_prompt, multiimage_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo, mesh_simplify, texture_size],
outputs=[download_glb],
).then(
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
outputs=[extract_gs_btn, download_glb],
)
video_output.clear(
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False), gr.Button(interactive=False)]),
outputs=[extract_gs_btn, download_glb, download_gs],
)
extract_gs_btn.click(
extract_gaussian,
inputs=[output_buf],
outputs=[model_output, download_gs],
).then(
lambda: gr.Button(interactive=True),
outputs=[download_gs],
)
model_output.clear(
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
outputs=[download_glb, download_gs],
)
# Launch the Gradio app
if __name__ == "__main__":
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
pipeline.cuda()
try:
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
except:
pass
demo.launch(
mcp_server=True,
show_error=True # ✅ Enable verbose backend error reporting
) |