File size: 11,859 Bytes
67dd03a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import gradio as gr
from gradio_calendar import Calendar
import datetime
import requests
import pandas as pd
import os
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import calendar

url = "https://api.brevo.com/v3/smtp/statistics/events"
headers = {
    'accept': 'application/json',
    'api-key': os.getenv('BREVO_API_KEY')
    }
events_cols = [
    'collectivite',
    'email',
    'date',
    'subject',
    'event',
    'g_men',
    'g_conso',
    'ressource',
]

# Recursively filter logs to get all logs
def get_events(limit=5000, offset=0, **kwargs):
    try:
        # Get all your transactional email activity (unaggregated events)
        params = {'limit': limit, 'offset': offset}
        params.update(kwargs)
        api_response = requests.get(url=url, params=params, headers=headers)
        response = api_response.json()
        events = response['events']
        print(f"- Found {len(events)} events (limit={limit} - offset={offset}).")

    except Exception as e:
        print("Exception when calling TransactionalEmailsApi->get_email_event_report: %s\n" % e)
        events = []

    if len(events) < limit:
        # print("All logs found.")
        return events
    else:
        return events + get_events(limit=limit, offset=offset+limit, **kwargs)

def get_all_events(year, months):
    df = pd.DataFrame()
    for month in months:
        startDate = f'{year}-{month:02d}-01'
        endDate = f'{year}-{month:02d}-{calendar.monthrange(year, month)[1]}'
        today = datetime.date.today().strftime('%Y-%m-%d')
        if endDate > today:
            endDate = today

        if startDate < today:
            print(f'{year}.{month:02d}:')
            events = get_events(startDate=startDate, endDate=endDate, sort='asc')
            df = pd.concat([df, pd.DataFrame(events)])
            print(f'=> Found {len(events)} month events.\n')
    print(f'=> Found {len(df)} total events.')
    return df

# Add stratification datas
def get_stratification_datas(events_df, users_df):
    # Join dataset
    dataset = users_df.merge(events_df, left_on='mail', right_on='email', how='left')
    filter = dataset['messageId'].notna()
    dataset = dataset[filter]
    # dataset = dataset.drop(columns='date').drop_duplicates().reset_index(drop=True)
    return dataset

# Filter event
def filter_datas(df, filters):
    # print("Filters:", filters)
    if not filters:
        return df
    k, v = filters[0]
    # print(f"Filter on {k} = {v}")
    filter = df[k].isin(v)
    return filter_datas(df[filter], filters[1:])

# Filter on date
def filter_dates(df, start_date, end_date):
    start = np.datetime64(start_date) if start_date else np.datetime64(events_df['date'].min())
    end = np.datetime64(end_date) if end_date else np.datetime64(events_df['date'].max())
    filter = (df['date']>=start) & (df['date']<end)
    return df[filter].drop(columns='date').drop_duplicates().reset_index(drop=True)

strate_dict = {
    'g_men': 'Ménage',
    'g_conso': 'Consommation'
}

events_dict = {
    'delivered': 'Envoyé',
    'opened': 'Ouvert',
    'loadedByProxy': 'Ouvert (Apple)',
    'clicks': 'Cliqué',
    'unsubscribed': 'Désinscrit'
}

# Load users
filename = "dataset.csv"
users_df = pd.read_csv(filename)
print(f'- Loaded users datas: {users_df.shape}.')

# Load consumptions
filename = "consos.csv"
consos_df = pd.read_csv(filename)
consos_df['periode'] = consos_df['periode'].astype(str).replace('2023.1', '2023.10')
print(f'- Loaded consos datas: {consos_df.shape}.')

# Load log events
print('Load events dataframe...')
events_df = get_all_events(year=2024,
                           months=list(range(5, 11)))

# Remove test users
filter = events_df['email'].isin(['huynhdoo@gmail.com, anne@thegoodtrack', 'tarteret.astrid@gmail.com', 'ma.morel.pro@gmail.com', 'laura.stabile@grandchambery.fr', 'cyrille.girel@grandchambery.fr'])
events_df = events_df[~filter].reset_index()

# Remove impact mails
# filter = events_df['templateId'].isin([39, 40])
# events_df = events_df[~filter].reset_index()

# Cast datetime column
events_df['date'] = pd.to_datetime(events_df['date']).dt.tz_localize(None)
print('Build dataset...')
dataset = get_stratification_datas(events_df, users_df)

# Event col
filter = dataset['event'].isin(events_dict.keys())
dataset = dataset[filter]
dataset['event'] = dataset['event'].map(events_dict)

# Rename subject
com_sub = 'savez-vous comment se porte votre ressource en eau ?'
subjects = [com_sub.capitalize() if com_sub in sub else sub for sub in dataset['subject']]
dataset['subject'] = subjects

# Strates col
# dataset.rename(columns=strate_dict, inplace=True)
print(f'Dataset ready: {dataset.shape}.')

def mails(community, subjects, start_date, end_date, gmens, gconsos, ressources):
    # Filter dates
    events_df = filter_dates(dataset, start_date, end_date)

    # Filter events
    filters = []
    if community:
        filters.append(('collectivite', community))
    if subjects:
        filters.append(('subject', subjects))
    if gmens:
        filters.append(('g_men', gmens))
    if gconsos:
        filters.append(('g_conso', gconsos))
    if ressources:
        filters.append(('ressource', ressources))

    events_df = filter_datas(events_df, filters)
    events_df = events_df[['email', 'subject', 'event']].drop_duplicates()
    events = events_df['event'].value_counts()

    # Build fig
    #x = events.index
    #y = events.values
    #fig, ax = plt.subplots()
    #bars = ax.bar(x, y, color=sns.palettes.mpl_palette('Dark2'))
    #ax.bar_label(bars)

    # Get logs
    filter = events_df['event'] == 'Envoyé'
    total = len(events_df[filter])
    if total > 0:
        logs = {f'{k} ({v})':v/total for k, v in events.to_dict().items()}
    else:
        logs = {f'{k} ({v})':v for k, v in events.to_dict().items()}
    return logs

def consos(community, periods, group):
    # Filter consos
    filters = []
    if community:
        filters.append(('collectivite', community))
    if periods:
        filters.append(('periode', periods))
    if group:
        filters.append(('group', group))

    datas = filter_datas(consos_df, filters)
    width = 0.4  # the width of the bars
    multiplier = 0

    periods = datas['periode'].astype(str).unique()
    x = np.arange(len(periods))

    test_group = datas[datas['group']=='test'][['periode', 'consommation']]
    control_group = datas[datas['group']=='control'][['periode', 'consommation']]


    # fig_sum
    fig_sum, ax_sum = plt.subplots(layout='constrained', figsize=(max(len(x), 10), 10))
    group_consos_sum = {
        'test': test_group.groupby('periode').sum()['consommation'].tolist(),
        'control': control_group.groupby('periode').sum()['consommation'].tolist(),
    }
    for group, consumptions in group_consos_sum.items():
        offset = width * multiplier
        rects = ax_sum.bar(x + offset, [round(c/(1000*1000)) for c in consumptions], width, label=group)
        ax_sum.bar_label(rects, padding=3)
        multiplier += 1
    ax_sum.set_title('Evolution de la consommation cumulée par groupe test/contrôle')
    ax_sum.set_ylabel('Consommation (dam3 = 1000 m3)')
    ax_sum.set_xlabel('Période')
    ax_sum.set_xticks(x + width, periods)
    ax_sum.legend(loc='upper right', ncols=2)

    # fig_med
    width = 0.4  # the width of the bars
    multiplier = 0
    fig_med, ax_med = plt.subplots(layout='constrained', figsize=(max(len(x), 10), 5))
    group_consos_med = {
        'test': test_group.groupby('periode').median()['consommation'].tolist(),
        'control': control_group.groupby('periode').median()['consommation'].tolist(),
    }
    for group, consumptions in group_consos_med.items():
        offset = width * multiplier
        rects = ax_med.bar(x + offset, [round(c/1000, 1) for c in consumptions], width, label=group)
        ax_med.bar_label(rects, padding=3)
        multiplier += 1
    ax_med.set_title('Evolution de la consommation médiane par groupe test/contrôle')
    ax_med.set_ylabel('Consommation (m3)')
    ax_med.set_xlabel('Période')
    ax_med.set_xticks(x + width, periods)
    ax_med.legend(loc='upper right', ncols=2)

    # fig_mean
    width = 0.4  # the width of the bars
    multiplier = 0
    fig_mean, ax_mean = plt.subplots(layout='constrained', figsize=(max(len(x), 10), 5))
    group_consos_mean = {
        'test': test_group.groupby('periode').mean()['consommation'].tolist(),
        'control': control_group.groupby('periode').mean()['consommation'].tolist(),
    }
    for group, consumptions in group_consos_mean.items():
        offset = width * multiplier
        rects = ax_mean.bar(x + offset, [round(c/1000, 1) for c in consumptions], width, label=group)
        ax_mean.bar_label(rects, padding=3)
        multiplier += 1
    ax_mean.set_title('Evolution de la consommation moyenne par groupe test/contrôle')
    ax_mean.set_ylabel('Consommation (m3)')
    ax_mean.set_xlabel('Période')
    ax_mean.set_xticks(x + width, periods)
    ax_mean.legend(loc='upper right', ncols=2)
    return fig_sum, fig_med, fig_mean

def results(subjects, start_date, end_date, gmens, gconsos, ressources):
    community = None
    campaign = mails(community, subjects, start_date, end_date, gmens, gconsos, ressources)
    start = start_date if start_date else events_df['date'].min()
    end = end_date if end_date else events_df['date'].max()
    periods = [start.strftime("%Y.%m"), end.strftime("%Y.%m")]
    group = None
    periods= None
    consos_sum, consos_med, consos_mean = consos(community, periods, group)
    return campaign, consos_med #consos_sum, consos_mean

main_interface = gr.Interface(
    fn=results,
    inputs=[
        #gr.Dropdown(choices=list(dataset['collectivite'].unique()), multiselect=True, allow_custom_value=False, label="Collectivité", info="Choisir une ou plusieurs collectivités"),
        gr.Dropdown(choices=list(dataset['subject'].unique()), multiselect=True, allow_custom_value=False, label="Mél envoyé", info="Choisir un ou plusieurs emails envoyés"),
        Calendar(type="datetime", value=events_df['date'].min(), label="Date de début", info="Choisir une date de début"),
        Calendar(type="datetime", value=events_df['date'].max(), label="Date de fin", info="Choisir une date de fin"),
        #gr.Dropdown(choices=list(dataset['event'].unique()), multiselect=True, allow_custom_value=False, label="Evénement", info="Choisir un ou plusieurs événements"),
        gr.Dropdown(choices=list(dataset['g_men'].unique()), multiselect=True, allow_custom_value=False, label="Type de ménage", info="Choisir un ou plusieurs groupes"),
        gr.Dropdown(choices=list(dataset['g_conso'].unique()), multiselect=True, allow_custom_value=False, label="Type de consommation", info="Choisir un ou plusieurs groupes"),
        gr.Dropdown(choices=list(dataset['ressource'].unique()), multiselect=True, allow_custom_value=False, label="Ressource", info="Choisir une ou plusieurs ressources"),
        #gr.Textbox(label="Recherche", info="Votre recherche (mots séparés par des virgules pour des recherches multiples)"),
        #gr.Dropdown(choices=list(origins.keys()), value=list(origins.keys())[0], label="Origine", info="Choisir un type de donnée à interroger"),
        #gr.Number(value=10, label="Nombre de résultats", info="Nombre de résultats attendus")
    ],
    outputs=[
        gr.Label(label="Méls"),
        #gr.Plot(label="Cumul"),
        gr.Plot(label="Médian"),
        #gr.Plot(label="Moyenne"),
    ],
    examples=[
    ],
    cache_examples=False
)

#gradio_app = gr.TabbedInterface([main_interface, consos_interface], tab_names=['Méls', 'Consommations'], title="Préservons l'eau - Tableau de bord")
gradio_app = main_interface
if __name__ == "__main__":
    gradio_app.launch(auth=("alerte", "renforcée"), share=True)