Spaces:
Runtime error
Runtime error
File size: 6,461 Bytes
6554f2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import pandas as pd
import numpy as np
from transformers import AutoTokenizer, RobertaModel, AutoModel, AutoModelForMaskedLM
from transformers import pipeline
import os
import json
class MLMTest():
def __init__(self, config_file="mlm_test_config.csv", full_text_file="mlm_full_text.csv", targeted_text_file="mlm_targeted_text.csv"):
self.config_df = pd.read_csv(os.path.join(os.path.dirname(os.path.realpath(__file__)), config_file))
self.config_df.fillna("", inplace=True)
self.full_text_df = pd.read_csv(os.path.join(os.path.dirname(os.path.realpath(__file__)), full_text_file))
self.targeted_text_df = pd.read_csv(os.path.join(os.path.dirname(os.path.realpath(__file__)), targeted_text_file))
self.full_text_results = []
self.targeted_text_results = []
def _run_full_test_row(self, text, print_debug=False):
return_data = []
data = text.split()
for i in range(0, len(data)):
masked_text = " ".join(data[:i]) + " "+self.nlp.tokenizer.mask_token+" " + " ".join(data[i+1:])
expected_result = data[i]
result = self.nlp(masked_text)
self.full_text_results.append({"text": masked_text, "result": result[0]["token_str"], "true_output": expected_result})
if print_debug:
print(masked_text)
print([x["token_str"] for x in result])
print("-"*20)
return_data.append({"prediction": result[0]["token_str"], "true_output": expected_result})
return return_data
def _run_targeted_test_row(self, text, expected_result, print_debug=False):
return_data = []
result = self.nlp(text.replace("<mask>", self.nlp.tokenizer.mask_token))
self.targeted_text_results.append({"text": text, "result": result[0]["token_str"], "true_output": expected_result})
if print_debug:
print(text)
print([x["token_str"] for x in result])
print("-"*20)
return_data.append({"prediction": result[0]["token_str"], "true_output": expected_result})
return return_data
def _compute_acc(self, results):
ctr = 0
for row in results:
try:
z = json.loads(row["true_output"])
if isinstance(z, list):
if row["prediction"] in z:
ctr+=1
except:
if row["prediction"] == row["true_output"]:
ctr+=1
return float(ctr/len(results))
def run_full_test(self, exclude_user_ids=[], print_debug=False):
df = pd.DataFrame()
for idx, row in self.config_df.iterrows():
self.full_text_results = []
model_name = row["model_name"]
display_name = row["display_name"] if row["display_name"] else row["model_name"]
revision = row["revision"] if row["revision"] else "main"
from_flax = row["from_flax"]
if from_flax:
model = AutoModelForMaskedLM.from_pretrained(model_name, from_flax=True, revision=revision)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.save_pretrained('exported_pytorch_model')
model.save_pretrained('exported_pytorch_model')
self.nlp = pipeline('fill-mask', model="exported_pytorch_model")
else:
self.nlp = pipeline('fill-mask', model=model_name)
accs = []
try:
for idx, row in self.full_text_df.iterrows():
if row["user_id"] in exclude_user_ids:
continue
results = self._run_full_test_row(row["text"], print_debug=print_debug)
acc = self._compute_acc(results)
accs.append(acc)
except:
print("Error for", display_name)
continue
print(display_name, " Average acc:", sum(accs)/len(accs))
if df.empty:
df = pd.DataFrame(self.full_text_results)
df.rename(columns={"result": display_name}, inplace=True)
else:
preds = [x["result"] for x in self.full_text_results]
df[display_name] = preds
df.to_csv("full_text_results.csv", index=False)
print("Results saved to full_text_results.csv")
def run_targeted_test(self, exclude_user_ids=[], print_debug=False):
df = pd.DataFrame()
for idx, row in self.config_df.iterrows():
self.targeted_text_results = []
model_name = row["model_name"]
display_name = row["display_name"] if row["display_name"] else row["model_name"]
revision = row["revision"] if row["revision"] else "main"
from_flax = row["from_flax"]
if from_flax:
model = AutoModelForMaskedLM.from_pretrained(model_name, from_flax=True, revision=revision)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.save_pretrained('exported_pytorch_model')
model.save_pretrained('exported_pytorch_model')
self.nlp = pipeline('fill-mask', model="exported_pytorch_model")
else:
self.nlp = pipeline('fill-mask', model=model_name)
accs = []
try:
for idx, row2 in self.targeted_text_df.iterrows():
if row2["user_id"] in exclude_user_ids:
continue
results = self._run_targeted_test_row(row2["text"], row2["output"], print_debug=print_debug)
acc = self._compute_acc(results)
accs.append(acc)
except:
import traceback
print(traceback.format_exc())
print("Error for", display_name)
continue
print(display_name, " Average acc:", sum(accs)/len(accs))
if df.empty:
df = pd.DataFrame(self.targeted_text_results)
df.rename(columns={"result": display_name}, inplace=True)
else:
preds = [x["result"] for x in self.targeted_text_results]
df[display_name] = preds
df.to_csv("targeted_text_results.csv", index=False)
print("Results saved to targeted_text_results.csv")
|