Spaces:
Sleeping
Sleeping
File size: 22,875 Bytes
d4d97a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import datetime
from dateutil.relativedelta import relativedelta
import plotly.express as px
import plotly.graph_objects as go
import plotly.figure_factory as ff
from plotly.subplots import make_subplots
import yfinance as yf
import seaborn as sns
from scipy import stats
from typing import Dict, Optional, List
import warnings
warnings.filterwarnings('ignore')
# Try importing mftool, handle if not available
try:
from mftool import Mftool
mftool_available = True
except ImportError:
mftool_available = False
# Define a placeholder if needed, or ensure Mftool() isn't called if not available
class Mftool: pass
try:
from yahooquery import Ticker
yahooquery_available = True
except ImportError:
yahooquery_available = False
# Set page configuration
st.set_page_config(
page_title="Mutual Fund Analytics Suite",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS styling
st.markdown("""
<style>
.main {
padding: 2rem;
}
.stButton>button {
width: 100%;
background-color: #1f77b4;
color: white;
}
.reportview-container .main .block-container {
padding-top: 2rem;
}
h1 {
color: #1f77b4;
}
.stMetric {
background-color: #f8f9fa;
padding: 1rem;
border-radius: 5px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.stAlert {
padding: 1rem;
margin: 1rem 0;
border-radius: 0.5rem;
}
</style>
""", unsafe_allow_html=True)
# Cache data fetching functions
@st.cache_data(ttl=3600)
def fetch_mutual_fund_data(mutual_fund_code: str) -> Optional[pd.DataFrame]:
"""Fetch mutual fund data from mftool."""
if not mftool_available:
st.error("mftool library is not installed. Cannot fetch Indian mutual fund data.")
return None
try:
mf = Mftool()
# Step 1: Fetch the data
raw_df = mf.get_scheme_historical_nav(mutual_fund_code, as_Dataframe=True)
# Step 2: Check if data was successfully fetched (is not None)
if raw_df is not None and not raw_df.empty:
# Step 3: Process the DataFrame only if it exists and is not empty
df = (raw_df
.reset_index()
.assign(nav=lambda x: pd.to_numeric(x['nav'], errors='coerce'), # Use pd.to_numeric for safety
date=lambda x: pd.to_datetime(x['date'], format='%d-%m-%Y', errors='coerce'))
.dropna(subset=['nav', 'date']) # Remove rows where conversion failed
.sort_values('date')
.reset_index(drop=True))
if df.empty:
st.warning(f"No valid historical NAV data found for fund code {mutual_fund_code} after processing.")
return None
return df
else:
# Handle the case where mftool returned None or an empty DataFrame
st.error(f"Could not fetch data for mutual fund code: {mutual_fund_code}. It might be invalid, contain no data, or data is unavailable from the source.")
return None # Explicitly return None if fetching failed or returned empty
except Exception as e:
# Catch other potential exceptions during processing or Mftool instantiation
st.error(f"An unexpected error occurred while fetching/processing data for {mutual_fund_code}: {str(e)}")
return None
@st.cache_data(ttl=3600)
def load_yahoo_finance_data(ticker_symbol: str, start_date: datetime.date, end_date: datetime.date) -> Optional[pd.DataFrame]:
"""Fetch data from Yahoo Finance."""
try:
data = yf.download(ticker_symbol, start=start_date, end=end_date)
data = data.reset_index()
data = data.rename(columns={'Date': 'date', 'Close': 'nav', 'Volume': 'volume'})
return data
except Exception as e:
st.error(f"Error fetching Yahoo Finance data: {str(e)}")
return None
def calculate_risk_metrics(returns: pd.Series) -> Dict[str, float]:
"""Calculate comprehensive risk metrics for the fund."""
try:
metrics = {
'volatility': returns.std() * np.sqrt(252),
'sharpe_ratio': (returns.mean() * 252) / (returns.std() * np.sqrt(252)),
'sortino_ratio': (returns.mean() * 252) / (returns[returns < 0].std() * np.sqrt(252)),
'max_drawdown': (1 - (1 + returns).cumprod() / (1 + returns).cumprod().cummax()).max(),
'skewness': stats.skew(returns),
'kurtosis': stats.kurtosis(returns),
'var_95': np.percentile(returns, 5),
'cvar_95': returns[returns <= np.percentile(returns, 5)].mean(),
'positive_days': (returns > 0).mean() * 100,
'negative_days': (returns < 0).mean() * 100,
'avg_gain': returns[returns > 0].mean(),
'avg_loss': returns[returns < 0].mean()
}
return metrics
except Exception as e:
st.error(f"Error calculating risk metrics: {str(e)}")
return {}
def plot_price_volume_chart(df: pd.DataFrame) -> go.Figure:
"""Create an interactive price and volume chart."""
try:
fig = make_subplots(rows=2, cols=1, shared_xaxes=True,
vertical_spacing=0.03,
row_heights=[0.7, 0.3])
fig.add_trace(go.Candlestick(x=df['date'],
open=df['Open'],
high=df['High'],
low=df['Low'],
close=df['nav'],
name='Price'),
row=1, col=1)
fig.add_trace(go.Bar(x=df['date'],
y=df['volume'],
name='Volume'),
row=2, col=1)
fig.update_layout(
title='Price and Volume Analysis',
yaxis_title='Price',
yaxis2_title='Volume',
height=800,
template='plotly_white'
)
return fig
except Exception as e:
st.error(f"Error creating price-volume chart: {str(e)}")
return None
def plot_returns_distribution(returns: pd.Series) -> go.Figure:
"""Create an interactive returns distribution plot."""
try:
fig = go.Figure()
# Actual returns distribution
fig.add_trace(go.Histogram(
x=returns,
name='Actual Returns',
nbinsx=50,
histnorm='probability'
))
# Normal distribution overlay
x_range = np.linspace(returns.min(), returns.max(), 100)
normal_dist = stats.norm.pdf(x_range, returns.mean(), returns.std())
fig.add_trace(go.Scatter(
x=x_range,
y=normal_dist,
name='Normal Distribution',
line=dict(color='red')
))
fig.update_layout(
title='Returns Distribution Analysis',
xaxis_title='Returns',
yaxis_title='Probability',
barmode='overlay',
showlegend=True,
template='plotly_white'
)
return fig
except Exception as e:
st.error(f"Error creating returns distribution plot: {str(e)}")
return None
def plot_rolling_metrics(df: pd.DataFrame, window: int = 30) -> go.Figure:
"""Create rolling metrics visualization with confidence bands."""
try:
rolling_returns = df['daily_returns'].rolling(window=window)
rolling_vol = rolling_returns.std() * np.sqrt(252)
rolling_mean = rolling_returns.mean() * 252
rolling_sharpe = rolling_mean / (rolling_returns.std() * np.sqrt(252))
fig = go.Figure()
# Add rolling volatility with confidence bands
vol_std = rolling_vol.std()
fig.add_trace(go.Scatter(
x=df['date'],
y=rolling_vol + 2*vol_std,
fill=None,
mode='lines',
line_color='rgba(0,100,80,0.2)',
name='Volatility Upper Band'
))
fig.add_trace(go.Scatter(
x=df['date'],
y=rolling_vol - 2*vol_std,
fill='tonexty',
mode='lines',
line_color='rgba(0,100,80,0.2)',
name='Volatility Lower Band'
))
fig.add_trace(go.Scatter(
x=df['date'],
y=rolling_vol,
name='Rolling Volatility',
line=dict(color='rgb(0,100,80)')
))
fig.add_trace(go.Scatter(
x=df['date'],
y=rolling_sharpe,
name='Rolling Sharpe Ratio',
yaxis='y2',
line=dict(color='rgb(200,30,30)')
))
fig.update_layout(
title=f'Rolling Metrics (Window: {window} days)',
yaxis=dict(title='Annualized Volatility'),
yaxis2=dict(title='Sharpe Ratio', overlaying='y', side='right'),
showlegend=True,
height=600,
template='plotly_white'
)
return fig
except Exception as e:
st.error(f"Error creating rolling metrics plot: {str(e)}")
return None
def plot_comparative_analysis(dfs: Dict[str, pd.DataFrame]) -> List[go.Figure]:
"""Create comparative analysis plots."""
try:
# Normalize all fund values to 100
normalized_dfs = {}
for name, df in dfs.items():
normalized_dfs[name] = df.copy()
normalized_dfs[name]['normalized_nav'] = df['nav'] / df['nav'].iloc[0] * 100
# Create comparative performance plot
perf_fig = go.Figure()
for name, df in normalized_dfs.items():
perf_fig.add_trace(go.Scatter(
x=df['date'],
y=df['normalized_nav'],
name=name,
mode='lines'
))
perf_fig.update_layout(
title='Comparative Performance Analysis',
xaxis_title='Date',
yaxis_title='Normalized Value (Base=100)',
template='plotly_white'
)
# Create correlation heatmap
returns_df = pd.DataFrame()
for name, df in dfs.items():
returns_df[name] = df['nav'].pct_change()
corr_matrix = returns_df.corr()
corr_fig = go.Figure(data=go.Heatmap(
z=corr_matrix,
x=corr_matrix.columns,
y=corr_matrix.columns,
colorscale='RdBu',
zmin=-1,
zmax=1
))
corr_fig.update_layout(
title='Returns Correlation Matrix',
template='plotly_white'
)
return [perf_fig, corr_fig]
except Exception as e:
st.error(f"Error creating comparative analysis plots: {str(e)}")
return []
def plot_risk_analytics(df: pd.DataFrame) -> List[go.Figure]:
"""Create risk analytics plots."""
try:
returns = df['nav'].pct_change()
# Create drawdown plot
cum_returns = (1 + returns).cumprod()
rolling_max = cum_returns.cummax()
drawdowns = (cum_returns - rolling_max) / rolling_max
drawdown_fig = go.Figure()
drawdown_fig.add_trace(go.Scatter(
x=df['date'],
y=drawdowns,
fill='tozeroy',
name='Drawdown'
))
drawdown_fig.update_layout(
title='Historical Drawdown Analysis',
xaxis_title='Date',
yaxis_title='Drawdown',
template='plotly_white'
)
# Create risk-return scatter plot
rolling_windows = [30, 60, 90, 180, 252]
risk_return_data = []
for window in rolling_windows:
rolling_returns = returns.rolling(window=window)
risk = rolling_returns.std() * np.sqrt(252)
ret = rolling_returns.mean() * 252
risk_return_data.append({
'window': f'{window} days',
'risk': risk.mean(),
'return': ret.mean()
})
risk_return_df = pd.DataFrame(risk_return_data)
risk_return_fig = px.scatter(
risk_return_df,
x='risk',
y='return',
text='window',
title='Risk-Return Analysis Across Different Time Windows'
)
risk_return_fig.update_traces(textposition='top center')
risk_return_fig.update_layout(template='plotly_white')
return [drawdown_fig, risk_return_fig]
except Exception as e:
st.error(f"Error creating risk analytics plots: {str(e)}")
return []
def main():
st.title("π Advanced Mutual Fund Analytics Platform")
st.markdown("""
### Professional-Grade Investment Analysis Tool
This platform provides comprehensive mutual fund analytics with advanced risk metrics,
interactive visualizations, and comparative analysis capabilities.
""")
# Sidebar controls
st.sidebar.header("Analysis Controls")
analysis_type = st.sidebar.selectbox(
"Select Analysis Type",
["Single Fund Analysis", "Comparative Analysis", "Risk Analytics"]
)
# Date range selection
col1, col2 = st.sidebar.columns(2)
with col1:
start_date = st.date_input(
"Start Date",
datetime.date.today() - relativedelta(years=3)
)
with col2:
end_date = st.date_input(
"End Date",
datetime.date.today()
)
if analysis_type == "Single Fund Analysis":
st.header("Single Fund Analysis")
input_type = st.radio(
"Select Input Type",
["Yahoo Finance Ticker", "Mutual Fund Code (Indian)"]
)
if input_type == "Yahoo Finance Ticker":
fund_id = st.text_input("Enter Yahoo Finance Ticker", "0P0000XW8F.BO")
if st.button("Analyze Fund"):
with st.spinner("Fetching and analyzing data..."):
df = load_yahoo_finance_data(fund_id, start_date, end_date)
if df is not None:
df['daily_returns'] = df['nav'].pct_change()
metrics = calculate_risk_metrics(df['daily_returns'].dropna())
# Display metrics in a clean format
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Annualized Volatility", f"{metrics['volatility']:.2%}")
st.metric("Sharpe Ratio", f"{metrics['sharpe_ratio']:.2f}")
with col2:
st.metric("Maximum Drawdown", f"{metrics['max_drawdown']:.2%}")
st.metric("Value at Risk (95%)", f"{metrics['var_95']:.2%}")
with col3:
st.metric("Positive Days", f"{metrics['positive_days']:.1f}%")
st.metric("Average Daily Gain", f"{metrics['avg_gain']:.2%}")
with col4:
st.metric("Negative Days", f"{metrics['negative_days']:.1f}%")
st.metric("Average Daily Loss", f"{metrics['avg_loss']:.2%}")
# Create tabs for different visualizations
tab1, tab2, tab3 = st.tabs(["Price Analysis", "Returns Analysis", "Risk Metrics"])
with tab1:
if 'Open' in df.columns:
price_vol_fig = plot_price_volume_chart(df)
if price_vol_fig:
st.plotly_chart(price_vol_fig, use_container_width=True)
with tab2:
returns_dist_fig = plot_returns_distribution(df['daily_returns'].dropna())
if returns_dist_fig:
st.plotly_chart(returns_dist_fig, use_container_width=True)
with tab3:
window = st.slider("Rolling Window (days)", 10, 252, 30)
rolling_fig = plot_rolling_metrics(df, window)
if rolling_fig:
st.plotly_chart(rolling_fig, use_container_width=True)
else:
fund_code = st.text_input("Enter Mutual Fund Code", "118989")
if st.button("Analyze Fund"):
with st.spinner("Fetching and analyzing data..."):
df = fetch_mutual_fund_data(fund_code)
if df is not None:
df['daily_returns'] = df['nav'].pct_change()
# Perform the same analysis as above
metrics = calculate_risk_metrics(df['daily_returns'].dropna())
# Display metrics and charts (same as above)
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Annualized Volatility", f"{metrics['volatility']:.2%}")
st.metric("Sharpe Ratio", f"{metrics['sharpe_ratio']:.2f}")
with col2:
st.metric("Maximum Drawdown", f"{metrics['max_drawdown']:.2%}")
st.metric("Value at Risk (95%)", f"{metrics['var_95']:.2%}")
with col3:
st.metric("Positive Days", f"{metrics['positive_days']:.1f}%")
st.metric("Average Daily Gain", f"{metrics['avg_gain']:.2%}")
with col4:
st.metric("Negative Days", f"{metrics['negative_days']:.1f}%")
st.metric("Average Daily Loss", f"{metrics['avg_loss']:.2%}")
tab1, tab2 = st.tabs(["Returns Analysis", "Risk Metrics"])
with tab1:
returns_dist_fig = plot_returns_distribution(df['daily_returns'].dropna())
if returns_dist_fig:
st.plotly_chart(returns_dist_fig, use_container_width=True)
with tab2:
window = st.slider("Rolling Window (days)", 10, 252, 30)
rolling_fig = plot_rolling_metrics(df, window)
if rolling_fig:
st.plotly_chart(rolling_fig, use_container_width=True)
elif analysis_type == "Comparative Analysis":
st.header("Comparative Analysis")
num_funds = st.number_input("Number of funds to compare", min_value=2, max_value=5, value=2)
funds_data = {}
for i in range(num_funds):
st.subheader(f"Fund {i + 1}")
input_type = st.radio(
f"Select Input Type for Fund {i + 1}",
["Yahoo Finance Ticker", "Mutual Fund Code (Indian)"],
key=f"input_type_{i}"
)
if input_type == "Yahoo Finance Ticker":
fund_id = st.text_input(f"Enter Yahoo Finance Ticker {i + 1}",
value=f"0P0000XW8F.BO" if i == 0 else "",
key=f"yahoo_{i}")
fund_name = st.text_input(f"Enter Fund Name {i + 1}",
value=f"Fund {i + 1}",
key=f"name_{i}")
funds_data[fund_name] = {'id': fund_id, 'type': 'yahoo'}
else:
fund_id = st.text_input(f"Enter Mutual Fund Code {i + 1}",
value="118989" if i == 0 else "",
key=f"mf_{i}")
fund_name = st.text_input(f"Enter Fund Name {i + 1}",
value=f"Fund {i + 1}",
key=f"name_{i}")
funds_data[fund_name] = {'id': fund_id, 'type': 'mf'}
if st.button("Compare Funds"):
with st.spinner("Fetching and comparing data..."):
dfs = {}
for name, info in funds_data.items():
if info['type'] == 'yahoo':
df = load_yahoo_finance_data(info['id'], start_date, end_date)
else:
df = fetch_mutual_fund_data(info['id'])
if df is not None:
dfs[name] = df
if len(dfs) > 1:
comparison_figs = plot_comparative_analysis(dfs)
if comparison_figs:
st.subheader("Comparative Performance")
st.plotly_chart(comparison_figs[0], use_container_width=True)
st.subheader("Correlation Analysis")
st.plotly_chart(comparison_figs[1], use_container_width=True)
else: # Risk Analytics
st.header("Risk Analytics")
input_type = st.radio(
"Select Input Type",
["Yahoo Finance Ticker", "Mutual Fund Code (Indian)"]
)
if input_type == "Yahoo Finance Ticker":
fund_id = st.text_input("Enter Yahoo Finance Ticker", "0P0000XW8F.BO")
else:
fund_id = st.text_input("Enter Mutual Fund Code", "118989")
if st.button("Analyze Risk"):
with st.spinner("Performing risk analysis..."):
df = load_yahoo_finance_data(fund_id, start_date, end_date) if input_type == "Yahoo Finance Ticker" else fetch_mutual_fund_data(fund_id)
if df is not None:
risk_figs = plot_risk_analytics(df)
if risk_figs:
st.subheader("Drawdown Analysis")
st.plotly_chart(risk_figs[0], use_container_width=True)
st.subheader("Risk-Return Analysis")
st.plotly_chart(risk_figs[1], use_container_width=True)
if __name__ == "__main__":
main() |