File size: 2,253 Bytes
a44da98
 
 
 
 
 
 
 
5e29b5f
a44da98
 
88be6fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
title: Frontend
emoji: 🐢
colorFrom: pink
colorTo: blue
sdk: docker
pinned: false
license: mit
app_port: 3000
---

This is a [LlamaIndex](https://www.llamaindex.ai/) project using [Next.js](https://nextjs.org/) bootstrapped with [`create-llama`](https://github.com/run-llama/LlamaIndexTS/tree/main/packages/create-llama).

## Getting Started

First, install the dependencies:

```
npm install
```

Second, generate the embeddings of the documents in the `./data` directory (if this folder exists - otherwise, skip this step):

```
npm run generate
```

Third, run the development server:

```
npm run dev
```

Open [http://localhost:3000](http://localhost:3000) with your browser to see the result.

You can start editing the page by modifying `app/page.tsx`. The page auto-updates as you edit the file.

This project uses [`next/font`](https://nextjs.org/docs/basic-features/font-optimization) to automatically optimize and load Inter, a custom Google Font.

## Using Docker

1. Build an image for the Next.js app:

```
docker build -t <your_app_image_name> .
```

2. Generate embeddings:

Parse the data and generate the vector embeddings if the `./data` folder exists - otherwise, skip this step:

```
docker run \
  --rm \
  -v $(pwd)/.env:/app/.env \ # Use ENV variables and configuration from your file-system
  -v $(pwd)/config:/app/config \
  -v $(pwd)/data:/app/data \
  -v $(pwd)/cache:/app/cache \ # Use your file system to store the vector database
  <your_app_image_name> \
  npm run generate
```

3. Start the app:

```
docker run \
  --rm \
  -v $(pwd)/.env:/app/.env \ # Use ENV variables and configuration from your file-system
  -v $(pwd)/config:/app/config \
  -v $(pwd)/cache:/app/cache \ # Use your file system to store gea vector database
  -p 3000:3000 \
  <your_app_image_name>
```

## Learn More

To learn more about LlamaIndex, take a look at the following resources:

- [LlamaIndex Documentation](https://docs.llamaindex.ai) - learn about LlamaIndex (Python features).
- [LlamaIndexTS Documentation](https://ts.llamaindex.ai) - learn about LlamaIndex (Typescript features).

You can check out [the LlamaIndexTS GitHub repository](https://github.com/run-llama/LlamaIndexTS) - your feedback and contributions are welcome!