File size: 8,803 Bytes
644ef64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import streamlit as st
from streamlit_extras import add_vertical_space
import streamlit.components.v1 as components
from annotated_text import annotated_text
import tensorflow as tf
from tensorflow import keras
from keras.models import load_model
from PIL import Image
import numpy as np
from prediction_pipeline import diabetes_prediction, breast_cancer_prediction, heart_disease_prediction
#st.set_page_config(layout='wide')
import pandas as pd
import json
with st.sidebar:
st.title("Onsite Health Diagnostics-OHD")
diseases = ["Diabetes Prediction","Breast Cancer","Heart Disease Prediction","Malaria Detection", "Pneumonia Detection", "Brain Tumour Detection"]
selected_diseases = st.selectbox("Select Diseases to Predict", diseases)
if selected_diseases == "Diabetes Prediction":
st.title("DIABETES PREDICTION")
# Input fields for user to input data
pregnancies = st.number_input("Number of Pregnancies", 0, 17, 1)
glucose = st.number_input("Plasma Glucose Concentration (mg/dL)", 0, 200, 100)
blood_pressure = st.number_input("Diastolic Blood Pressure (mm Hg)", 0, 122, 70)
skin_thickness = st.number_input("Skin Thickness (mm)", 0, 99, 20)
insulin = st.number_input("Insulin Level (mu U/mL)", 0, 846, 79)
bmi = st.number_input("Body Mass Index (BMI)", 0.0, 67.1, 30.0)
dpf = st.number_input("Diabetes Pedigree Function", 0.078, 2.42, 0.3725)
age = st.number_input("Age (years)", 21, 81, 25)
if st.button("Predict"):
prediction = diabetes_prediction(data=[pregnancies,glucose,blood_pressure,skin_thickness,insulin,bmi,dpf,age])
if prediction==1:
st.error("The patient has diabetes")
else:
st.success("The patient does not have diabetes")
if selected_diseases == "Breast Cancer":
st.title("BREAST CANCER PREDICTION")
# Input fields for user to input data
radius_mean = st.number_input("Radius Mean", 6.981, 28.11, 14.127)
area_mean = st.number_input("Area Mean", 143.5, 2501.0, 654.889)
compactness_mean = st.number_input("Compactness Mean", 0.019, 0.345, 0.104)
concavity_mean = st.number_input("Concavity Mean", 0.0, 0.427, 0.089)
concave_points_mean = st.number_input("Concave Points Mean", 0.0, 0.201, 0.049)
area_worst = st.number_input("Area Worst", 185.200000, value=686.500000)
compactness_worst = st.number_input("Compactness Worst",0.027290, value=0.211900)
concavity_worst = st.number_input("Concavity Worst",0.000000, value=0.226700)
area_se = st.number_input("Area Se", 6.802000, value=24.530000)
fractal_dimension_se = st.number_input("Fractal Dimension Mean", 0.05, 0.097, 0.062)
symmetry_worst = st.number_input("Symmetry Worst", 0.106, 0.304, 0.181)
fractal_dimension_worst = st.number_input("Fractal_Dimension_Worst", 0.055040, value=0.080040)
if st.button("Predict"):
prediction = breast_cancer_prediction(data=[radius_mean,area_mean,compactness_mean,concavity_mean,concave_points_mean,area_worst,compactness_worst,concavity_worst,area_se,fractal_dimension_se,symmetry_worst,fractal_dimension_worst])
if prediction==1:
st.error("The patient has Breast Cancer")
else:
st.success("The patient does not have Breast Cancer")
if selected_diseases == "Heart Disease Prediction":
st.title("HEART DISEASE PREDICTION")
# Input fields for user to input data
age = st.number_input("Age", 29, 77, 50)
sex = st.selectbox("Sex", ["Male", "Female"])
ChestPainType = st.selectbox("Chest Pain Type", ["Typical Angina", "Atypical Angina", "Non-anginal Pain", "Asymptomatic"])
RestingBP = st.number_input("Resting Blood Pressure (mm Hg)", 94, 200, 120)
Cholesterol = st.number_input("Serum Cholesterol (mg/dl)", 126, 564, 240)
FastingBS = st.selectbox("Fasting Blood Sugar > 120 mg/dl", ["True", "False"])
RestingECG = st.selectbox("Resting Electrocardiographic Results", ["Normal", "ST-T wave abnormality", "Probable or Definite Left Ventricular Hypertrophy"])
MaxHR = st.number_input("Maximum Heart Rate Achieved", 71, 202, 150)
ExerciseAngina = st.selectbox("Exercise Induced Angina", ["Yes", "No"])
Oldpeak = st.number_input("ST Depression Induced by Exercise Relative to Rest", 0.0, 6.2, 2.0)
ST_Slope = st.selectbox("Slope of the Peak Exercise ST Segment", ["Upsloping", "Flat", "Downsloping"])
#converting categorical into numerical
sex = 1 if sex == "Male" else 0
if ChestPainType == "Typical Angina":
ChestPainType = 0
elif ChestPainType == "Atypical Angina":
ChestPainType = 1
elif ChestPainType == "Non-anginal Pain":
ChestPainType = 2
else:
ChestPainType = 3
if FastingBS == "True":
FastingBS = 1
else:
FastingBS = 0
if RestingECG == "Normal":
RestingECG = 0
elif RestingECG == "ST-T wave abnormality":
RestingECG = 1
else:
RestingECG = 2
if ExerciseAngina == "Yes":
ExerciseAngina = 1
else:
ExerciseAngina = 0
if ST_Slope == "Upsloping":
ST_Slope = 0
elif ST_Slope == "Flat":
ST_Slope = 1
else:
ST_Slope = 2
if st.button("Predict"):
prediction = heart_disease_prediction(data=[age,sex,ChestPainType,RestingBP,Cholesterol,FastingBS,RestingECG,MaxHR,ExerciseAngina,Oldpeak,ST_Slope])
if prediction==1:
st.error("The patient has Heart Disease")
else:
st.success("The patient does not have Heart Disease")
if selected_diseases == "Malaria Detection":
st.title("MALARIA DISEASE DETECTION")
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Display the uploaded image
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Image', use_column_width=True)
model = load_model('src/Malaria-Detection/malaria.h5')
def preprocess_image(image_file):
img = Image.open(image_file)
img = img.resize((128, 128)) # Resize the image to match the input size of the model
img_array = np.array(img) / 255.0 # Normalize pixel values
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
return img_array
def predict_malaria(image_file):
img_array = preprocess_image(image_file)
prediction = model.predict(img_array)
return prediction
# When the user clicks the predict button
if st.button("Predict"):
# Make prediction
prediction = predict_malaria(uploaded_file)
# Display prediction
if prediction[0][0] > 0.5:
st.success("The image does not contain malaria parasites.")
else:
st.error("The image contains malaria parasites.")
if selected_diseases == "Pneumonia Detection":
st.title("PNEUMONIA DISEASE DETECTION")
# Load the pre-trained model
model = load_model('src/Pneumonia-Detection/pneumonia_detection.h5')
# Function to preprocess the image
def preprocess_image(image_file):
img = Image.open(image_file)
img = img.resize((150, 150)) # Resize the image to match the input size of the model
img_array = np.array(img) / 255.0 # Normalize pixel values
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
return img_array
# Function to make prediction
def predict_pneumonia(image_file):
img_array = preprocess_image(image_file)
prediction = model.predict(img_array)
return prediction
# File uploader for user to upload an image
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
# When the user uploads an image and clicks the predict button
if uploaded_file is not None:
# Display the uploaded image
img = Image.open(uploaded_file)
st.image(img, caption='Uploaded Image', use_column_width=True)
# When the user clicks the predict button
if st.button("Predict"):
# Make prediction
prediction = predict_pneumonia(uploaded_file)
# Display prediction
if prediction[0][0] > 0.5:
st.error("The image indicates pneumonia.")
else:
st.success("The image is normal.")
if selected_diseases == "Brain Tumour Detection":
st.title("BRAIN TUMOUR DETECTION")
st.write("Working on it, coming soon!") |