Spaces:
Running
Running
File size: 15,115 Bytes
b3f1ffe e87951e b3f1ffe be398c6 b3f1ffe be398c6 b3f1ffe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
import streamlit as st
from chat_client import chat
import time
import pandas as pd
import os
from dotenv import load_dotenv
from search_client import SearchClient
import math
import numpy as np
from sentence_transformers import CrossEncoder
load_dotenv()
GOOGLE_SEARCH_ENGINE_ID = os.getenv("GOOGLE_SEARCH_ENGINE_ID")
GOOGLE_SEARCH_API_KEY = os.getenv("GOOGLE_SEARCH_API_KEY")
BING_SEARCH_API_KEY = os.getenv("BING_SEARCH_API_KEY")
COST_PER_1000_TOKENS_INR = 0.139
CHAT_BOTS = {
"Mixtral 8x7B v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"Mistral 7B v0.1": "mistralai/Mistral-7B-Instruct-v0.1",
}
INITIAL_PROMPT_ENGINEERING = {
"SYSTEM_INSTRUCTION": """ You are a knowledgeable author on medical conditions, with a deep expertise in Huntington's disease.
You provide extensive, clear information on complex medical topics, treatments, new research and developments.
You avoid giving personal medical advice or diagnoses but offers general advice and underscores the importance of consulting healthcare professionals.
Your goal is to inform, engage and enlighten users that enquire about Huntington's disease, offering factual data and real-life perspectives with anempathetic tone.
You use every search available including web search together with articles and information from
* Journal of Huntington's disease,
* Movement Disorders,
* Neurology,
* Journal of Neurology,
* Neurosurgery & Psychiatry,
* HDBuzz,
* PubMed,
* Huntington's disease Society of America (HDSA),
* Huntington Study Group (HSG),
* Nature Reviews Neurology
* ScienceDirect
The information you provide should be understandable to laypersons, well-organized, and include credible sources, citations, and an empathetic tone.
It should educate on the scientific aspects and personal challenges of living with Huntington's Disease.""",
"SYSTEM_RESPONSE": """Hello! I'm an assistant trained to provide detailed and accurate information on medical conditions, including Huntington's Disease.
I'm here to help answer your questions and provide resources to help you better understand this disease and its impact on individuals and their families.
If you have any questions about HD or related topics, feel free to ask!""",
"PRE_CONTEXT": """NOW YOU ARE SEARCHING THE WEB, AND HERE ARE THE CHUNKS RETRIEVED FROM THE WEB.""",
"POST_CONTEXT": """ """, # EMPTY
"PRE_PROMPT": """NOW ACCORDING TO THE CONTEXT RETRIEVED FROM THE GENERATE THE CONTENT FOR THE FOLLOWING SUBJECT""",
"POST_PROMPT": """
Do not repeat yourself
""",
}
googleSearchClient = SearchClient(
"google", api_key=GOOGLE_SEARCH_API_KEY, engine_id=GOOGLE_SEARCH_ENGINE_ID
)
bingSearchClient = SearchClient("bing", api_key=BING_SEARCH_API_KEY, engine_id=None)
st.set_page_config(
page_title="Mixtral Playground",
page_icon="π",
)
reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
def rerank(query, top_k, search_results):
chunks = []
for result in search_results:
text = result["text"]
# Chunk the text into segments of 512 words each
words = text.split()
chunk_size = 512
num_chunks = math.ceil(len(words) / chunk_size)
for i in range(num_chunks):
start = i * chunk_size
end = (i + 1) * chunk_size
chunk = " ".join(words[start:end])
chunks.append((result["link"], chunk))
# Create sentence combinations with the query
sentence_combinations = [[query, chunk[1]] for chunk in chunks]
# Compute similarity scores for these combinations
similarity_scores = reranker.predict(sentence_combinations)
# Sort scores in decreasing order
sim_scores_argsort = reversed(np.argsort(similarity_scores))
# Rearrange search_results based on the reranked scores
reranked_results = []
for idx in sim_scores_argsort:
link = chunks[idx][0]
for result in search_results:
if result["link"] == link:
reranked_results.append(result)
break
return reranked_results[:top_k]
def gen_augmented_prompt_via_websearch(
prompt,
vendor,
n_crawl,
top_k,
pre_context,
post_context,
pre_prompt="",
post_prompt="",
pass_prev=False,
):
"""returns a prompt with the context of the query and the top k web search results.
Args:
query (_type_): _description_
top_k (_type_): _description_
preprompt (str, optional): _description_. Defaults to "".
postprompt (str, optional): _description_. Defaults to "".
"""
search_results = []
if vendor == "Google":
search_results = googleSearchClient.search(prompt, n_crawl)
elif vendor == "Bing":
search_results = bingSearchClient.search(prompt, n_crawl)
reranked_results = rerank(prompt, top_k, search_results)
links = []
context = ""
for res in reranked_results:
context += res["text"] + "\n\n"
link = res["link"]
links.append(link)
print(reranked_results)
prev_input = st.session_state.history[-1][1] if pass_prev else ""
generated_prompt = f"""
{pre_context}
{context}
{post_context}
{pre_prompt}
{prompt} \n\n
{post_prompt}
{prev_input}
"""
return generated_prompt, links
def init_state():
if "messages" not in st.session_state:
st.session_state.messages = []
if "tokens_used" not in st.session_state:
st.session_state.tokens_used = 0
if "tps" not in st.session_state:
st.session_state.tps = 0
if "temp" not in st.session_state:
st.session_state.temp = 0.8
if "history" not in st.session_state:
st.session_state.history = [
[
INITIAL_PROMPT_ENGINEERING["SYSTEM_INSTRUCTION"],
INITIAL_PROMPT_ENGINEERING["SYSTEM_RESPONSE"],
]
]
if "n_crawl" not in st.session_state:
st.session_state.n_crawl = 5
if "repetion_penalty" not in st.session_state:
st.session_state.repetion_penalty = 1
if "rag_enabled" not in st.session_state:
st.session_state.rag_enabled = True
if "chat_bot" not in st.session_state:
st.session_state.chat_bot = "Mixtral 8x7B v0.1"
if "search_vendor" not in st.session_state:
st.session_state.search_vendor = "Bing"
if "system_instruction" not in st.session_state:
st.session_state.system_instruction = INITIAL_PROMPT_ENGINEERING[
"SYSTEM_INSTRUCTION"
]
if "system_response" not in st.session_state:
st.session_state.system_instruction = INITIAL_PROMPT_ENGINEERING[
"SYSTEM_RESPONSE"
]
if "pre_context" not in st.session_state:
st.session_state.pre_context = INITIAL_PROMPT_ENGINEERING["PRE_CONTEXT"]
if "post_context" not in st.session_state:
st.session_state.post_context = INITIAL_PROMPT_ENGINEERING["POST_CONTEXT"]
if "pre_prompt" not in st.session_state:
st.session_state.pre_prompt = INITIAL_PROMPT_ENGINEERING["PRE_PROMPT"]
if "post_prompt" not in st.session_state:
st.session_state.post_prompt = INITIAL_PROMPT_ENGINEERING["POST_PROMPT"]
if "pass_prev" not in st.session_state:
st.session_state.pass_prev = False
def sidebar():
def retrieval_settings():
st.markdown("# Web Retrieval")
st.session_state.rag_enabled = st.toggle("Activate Web Retrieval", value=True)
st.session_state.search_vendor = st.radio(
"Select Search Vendor",
["Bing", "Google"],
disabled=not st.session_state.rag_enabled,
)
st.session_state.n_crawl = st.slider(
label="Links to Crawl",
key=1,
min_value=1,
max_value=10,
value=4,
disabled=not st.session_state.rag_enabled,
)
st.session_state.top_k = st.slider(
label="Rerank Factor",
key=2,
min_value=1,
max_value=20,
value=4,
disabled=not st.session_state.rag_enabled,
)
st.markdown("---")
def model_analytics():
st.markdown("# Model Analytics")
st.write("Total tokens used :", st.session_state["tokens_used"])
st.write("Speed :", st.session_state["tps"], " tokens/sec")
st.write(
"Total cost incurred :",
round(
COST_PER_1000_TOKENS_INR * 80 * st.session_state["tokens_used"] / 1000,
3,
),
"INR",
)
st.markdown("---")
def model_settings():
st.markdown("# Model Settings")
st.session_state.chat_bot = st.sidebar.radio(
"Select one:", [key for key, _ in CHAT_BOTS.items()]
)
st.session_state.temp = st.slider(
label="Temperature", min_value=0.0, max_value=1.0, step=0.1, value=0.9
)
st.session_state.max_tokens = st.slider(
label="New tokens to generate",
min_value=64,
max_value=2048,
step=32,
value=512,
)
st.session_state.repetion_penalty = st.slider(
label="Repetion Penalty", min_value=0.0, max_value=1.0, step=0.1, value=1.0
)
with st.sidebar:
retrieval_settings()
model_analytics()
model_settings()
st.markdown(
"""
> **Created by [Pragnesh Barik](https://barik.super.site) π**
"""
)
def prompt_engineering_dashboard():
def engineer_prompt():
st.session_state.history[0] = [
st.session_state.system_instruction,
st.session_state.system_response,
]
with st.expander("Prompt Engineering Dashboard"):
st.info(
"**The input to the model follows this below template**",
)
st.code(
"""
[SYSTEM INSTRUCTION]
[SYSTEM RESPONSE]
[... LIST OF PREV INPUTS]
[PRE CONTEXT]
[CONTEXT RETRIEVED FROM THE WEB]
[POST CONTEXT]
[PRE PROMPT]
[PROMPT]
[POST PROMPT]
[PREV GENERATED INPUT] # Only if Pass previous prompt set True
"""
)
st.session_state.system_instruction = st.text_area(
label="SYSTEM INSTRUCTION",
value=INITIAL_PROMPT_ENGINEERING["SYSTEM_INSTRUCTION"],
)
st.session_state.system_response = st.text_area(
"SYSTEM RESPONSE", value=INITIAL_PROMPT_ENGINEERING["SYSTEM_RESPONSE"]
)
col1, col2 = st.columns(2)
with col1:
st.text_input(
"PRE CONTEXT",
value=INITIAL_PROMPT_ENGINEERING["PRE_CONTEXT"],
disabled=not st.session_state.rag_enabled,
)
st.text_input("PRE PROMPT", value=INITIAL_PROMPT_ENGINEERING["PRE_PROMPT"])
st.button("Engineer Prompts", on_click=engineer_prompt)
with col2:
st.text_input(
"POST CONTEXT",
value=INITIAL_PROMPT_ENGINEERING["POST_CONTEXT"],
disabled=not st.session_state.rag_enabled,
)
st.text_input(
"POST PROMPT", value=INITIAL_PROMPT_ENGINEERING["POST_PROMPT"]
)
pass_prev = st.toggle("Pass previous prompt")
def header():
st.write("# Mixtral Playground")
data = {
"Attribute": ["LLM", "Text Vectorizer", "Vector Database", "CPU", "System RAM"],
"Information": [
"Mixtral-8x7B-Instruct-v0.1",
"all-distilroberta-v1",
"Hosted Pinecone",
"2 vCPU",
"16 GB",
],
}
df = pd.DataFrame(data)
st.table(df)
prompt_engineering_dashboard()
def chat_box():
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
def generate_chat_stream(prompt):
links = []
if st.session_state.rag_enabled:
with st.spinner("Fetching relevent documents from Web...."):
prompt, links = gen_augmented_prompt_via_websearch(
prompt=prompt,
pre_context=st.session_state.pre_context,
post_context=st.session_state.post_context,
pre_prompt=st.session_state.pre_prompt,
post_prompt=st.session_state.post_prompt,
vendor=st.session_state.search_vendor,
top_k=st.session_state.top_k,
n_crawl=st.session_state.n_crawl,
)
with st.spinner("Generating response..."):
chat_stream = chat(
prompt,
st.session_state.history,
chat_client=CHAT_BOTS[st.session_state.chat_bot],
temperature=st.session_state.temp,
max_new_tokens=st.session_state.max_tokens,
)
return chat_stream, links
def stream_handler(chat_stream, placeholder):
start_time = time.time()
full_response = ""
for chunk in chat_stream:
if chunk.token.text != "</s>":
full_response += chunk.token.text
placeholder.markdown(full_response + "β")
placeholder.markdown(full_response)
end_time = time.time()
elapsed_time = end_time - start_time
total_tokens_processed = len(full_response.split())
tokens_per_second = total_tokens_processed // elapsed_time
len_response = (len(prompt.split()) + len(full_response.split())) * 1.25
col1, col2, col3 = st.columns(3)
with col1:
st.write(f"**{tokens_per_second} tokens/second**")
with col2:
st.write(f"**{int(len_response)} tokens generated**")
with col3:
st.write(
f"**$ {round(len_response * COST_PER_1000_TOKENS_INR * 82 / 1000, 5)} cost incurred**"
)
st.session_state["tps"] = tokens_per_second
st.session_state["tokens_used"] = len_response + st.session_state["tokens_used"]
return full_response
def show_source(links):
with st.expander("Show source"):
for i, link in enumerate(links):
st.info(f"{link}")
init_state()
sidebar()
header()
chat_box()
if prompt := st.chat_input("Generate Ebook"):
st.chat_message("user").markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
chat_stream, links = generate_chat_stream(prompt)
with st.chat_message("assistant"):
placeholder = st.empty()
full_response = stream_handler(chat_stream, placeholder)
if st.session_state.rag_enabled:
show_source(links)
st.session_state.history.append([prompt, full_response])
st.session_state.messages.append({"role": "assistant", "content": full_response})
|