Spaces:
Build error
Build error
File size: 10,527 Bytes
f901e07 09bfede f901e07 09bfede f901e07 09bfede f901e07 09bfede f901e07 09bfede f901e07 09bfede f901e07 ea3b369 1ef6532 f901e07 09bfede f901e07 09bfede f901e07 09bfede f901e07 09bfede f901e07 09bfede f901e07 09bfede f901e07 09bfede f901e07 09bfede f901e07 09bfede f901e07 09bfede f901e07 09bfede f901e07 09bfede f901e07 09bfede f901e07 09bfede f901e07 09bfede f901e07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import gradio as gr
import os, subprocess, torchaudio
import torch
from PIL import Image
import gradio as gr
import soundfile
from gtts import gTTS
import tempfile
from pydub.generators import Sine
from pydub import AudioSegment
import dlib
import cv2
import imageio
import os
import ffmpeg
from io import BytesIO
import requests
import sys
python_path = sys.executable
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface
block = gr.Blocks()
def compute_aspect_preserved_bbox(bbox, increase_area, h, w):
left, top, right, bot = bbox
width = right - left
height = bot - top
width_increase = max(increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width))
height_increase = max(increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height))
left_t = int(left - width_increase * width)
top_t = int(top - height_increase * height)
right_t = int(right + width_increase * width)
bot_t = int(bot + height_increase * height)
left_oob = -min(0, left_t)
right_oob = right - min(right_t, w)
top_oob = -min(0, top_t)
bot_oob = bot - min(bot_t, h)
if max(left_oob, right_oob, top_oob, bot_oob) > 0:
max_w = max(left_oob, right_oob)
max_h = max(top_oob, bot_oob)
if max_w > max_h:
return left_t + max_w, top_t + max_w, right_t - max_w, bot_t - max_w
else:
return left_t + max_h, top_t + max_h, right_t - max_h, bot_t - max_h
else:
return (left_t, top_t, right_t, bot_t)
def crop_src_image(src_img, detector=None):
if detector is None:
detector = dlib.get_frontal_face_detector()
save_img='/content/image_pre.png'
img = cv2.imread(src_img)
faces = detector(img, 0)
h, width, _ = img.shape
if len(faces) > 0:
bbox = [faces[0].left(), faces[0].top(),faces[0].right(), faces[0].bottom()]
l = bbox[3]-bbox[1]
bbox[1]= bbox[1]-l*0.1
bbox[3]= bbox[3]-l*0.1
bbox[1] = max(0,bbox[1])
bbox[3] = min(h,bbox[3])
bbox = compute_aspect_preserved_bbox(tuple(bbox), 0.5, img.shape[0], img.shape[1])
img = img[bbox[1] :bbox[3] , bbox[0]:bbox[2]]
img = cv2.resize(img, (256, 256))
cv2.imwrite(save_img,img)
else:
img = cv2.resize(img,(256,256))
cv2.imwrite(save_img, img)
return save_img
def pad_image(image):
w, h = image.size
if w == h:
return image
elif w > h:
new_image = Image.new(image.mode, (w, w), (0, 0, 0))
new_image.paste(image, (0, (w - h) // 2))
return new_image
else:
new_image = Image.new(image.mode, (h, h), (0, 0, 0))
new_image.paste(image, ((h - w) // 2, 0))
return new_image
def calculate(image_in, audio_in):
waveform, sample_rate = torchaudio.load(audio_in)
waveform = torch.mean(waveform, dim=0, keepdim=True)
torchaudio.save("/content/audio.wav", waveform, sample_rate, encoding="PCM_S", bits_per_sample=16)
image_in = image_in.replace("results/", "")
print("****"*100)
print(f" *#*#*# original image => {image_in} *#*#*# ")
if os.path.exists(image_in):
print(f"image exists => {image_in}")
image = Image.open(image_in)
else:
print("image not exists reading web image")
image_url = "http://labelme.csail.mit.edu/Release3.0/Images/users/DNguyen91/face/m_unsexy_gr.jpg"
response = requests.get(image_url)
image = Image.open(BytesIO(response.content))
print("****"*100)
image = pad_image(image)
# os.system(f"rm -rf /content/image.png")
image.save("image.png")
pocketsphinx_run = subprocess.run(['pocketsphinx', '-phone_align', 'yes', 'single', '/content/audio.wav'], check=True, capture_output=True)
jq_run = subprocess.run(['jq', '[.w[]|{word: (.t | ascii_upcase | sub("<S>"; "sil") | sub("<SIL>"; "sil") | sub("\\\(2\\\)"; "") | sub("\\\(3\\\)"; "") | sub("\\\(4\\\)"; "") | sub("\\\[SPEECH\\\]"; "SIL") | sub("\\\[NOISE\\\]"; "SIL")), phones: [.w[]|{ph: .t | sub("\\\+SPN\\\+"; "SIL") | sub("\\\+NSN\\\+"; "SIL"), bg: (.b*100)|floor, ed: (.b*100+.d*100)|floor}]}]'], input=pocketsphinx_run.stdout, capture_output=True)
with open("test.json", "w") as f:
f.write(jq_run.stdout.decode('utf-8').strip())
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# os.system(f"rm -rf /content/image_audio.mp4")
os.system(f"cd /content/one-shot-talking-face && {python_path} -B test_script.py --img_path /content/image.png --audio_path /content/audio.wav --phoneme_path /content/test.json --save_dir /content/train")
return "/content/train/image_audio.mp4"
def merge_frames():
path = '/content/video_results/restored_imgs'
if not os.path.exists(path):
os.makedirs(path)
image_folder = os.fsencode(path)
print(image_folder)
filenames = []
for file in os.listdir(image_folder):
filename = os.fsdecode(file)
if filename.endswith( ('.jpg', '.png', '.gif') ):
filenames.append(filename)
filenames.sort() # this iteration technique has no built in order, so sort the frames
print(filenames)
images = list(map(lambda filename: imageio.imread("/content/video_results/restored_imgs/"+filename), filenames))
# os.system(f"rm -rf /content/video_output.mp4")
imageio.mimsave('/content/video_output.mp4', images, fps=25.0) # modify the frame duration as needed
return "/content/video_output.mp4"
def audio_video():
input_video = ffmpeg.input('/content/video_output.mp4')
input_audio = ffmpeg.input('/content/audio.wav')
os.system(f"rm -rf /content/final_output.mp4")
ffmpeg.concat(input_video, input_audio, v=1, a=1).output('/content/final_output.mp4').run()
return "/content/final_output.mp4"
def one_shot_talking(image_in,audio_in):
# Pre-processing of image
crop_img=crop_src_image(image_in)
if os.path.exists("/content/results/restored_imgs/image_pre.png"):
os.system(f"rm -rf /content/results/restored_imgs/image_pre.png")
if not os.path.exists( "/content/results" ):
os.makedirs("/content/results")
#Improve quality of input image
os.system(f"{python_path} /content/GFPGAN/inference_gfpgan.py --upscale 2 -i /content/image_pre.png -o /content/results --bg_upsampler realesrgan")
# time.sleep(60)
image_in_one_shot='/content/results/image_pre.png'
#One Shot Talking Face algorithm
calculate(image_in_one_shot,audio_in)
#Video Quality Improvement
os.system(f"rm -rf /content/extracted_frames/image_audio_frames")
#1. Extract the frames from the video file using PyVideoFramesExtractor
os.system(f"{python_path} /content/PyVideoFramesExtractor/extract.py --video=/content/train/image_audio.mp4")
#2. Improve image quality using GFPGAN on each frames
# os.system(f"rm -rf /content/extracted_frames/image_audio_frames")
os.system(f"rm -rf /content/video_results/")
os.system(f"{python_path} /content/GFPGAN/inference_gfpgan.py --upscale 2 -i /content/extracted_frames/image_audio_frames -o /content/video_results --bg_upsampler realesrgan")
#3. Merge all the frames to a one video using imageio
merge_frames()
return audio_video()
def one_shot(image_in,input_text,gender):
if gender == "Female":
tts = gTTS(input_text)
with tempfile.NamedTemporaryFile(suffix='.mp3', delete=False) as f:
tts.write_to_fp(f)
f.seek(0)
sound = AudioSegment.from_file(f.name, format="mp3")
os.system(f"rm -rf /content/audio.wav")
sound.export("/content/audio.wav", format="wav")
audio_in="/content/audio.wav"
return one_shot_talking(image_in,audio_in)
elif gender == 'Male':
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"Voicemod/fastspeech2-en-male1",
arg_overrides={"vocoder": "hifigan", "fp16": False}
)
model = models[0]
TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
generator = task.build_generator([model], cfg)
# next(model.parameters()).device
sample = TTSHubInterface.get_model_input(task, input_text)
sample["net_input"]["src_tokens"] = sample["net_input"]["src_tokens"]
sample["net_input"]["src_lengths"] = sample["net_input"]["src_lengths"]
sample["speaker"] = sample["speaker"]
wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
# soundfile.write("/content/audio_before.wav", wav, rate)
os.system(f"rm -rf /content/audio_before.wav")
soundfile.write("/content/audio_before.wav", wav.cpu().clone().numpy(), rate)
os.system(f"rm -rf /content/audio.wav")
cmd='ffmpeg -i /content/audio_before.wav -filter:a "atempo=0.7" -vn /content/audio.wav'
os.system(cmd)
audio_in="/content/audio.wav"
return one_shot_talking(image_in,audio_in)
def run():
with gr.Blocks(css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}") as demo:
gr.Markdown("<h1 style='text-align: center;'>"+ "One Shot Talking Face from Text" + "</h1><br/><br/>")
with gr.Group():
# with gr.Box():
with gr.Row():
# with gr.Row().style(equal_height=True):
image_in = gr.Image(show_label=True, type="filepath",label="Input Image")
input_text = gr.Textbox(show_label=True,label="Input Text")
gender = gr.Radio(["Female","Male"],value="Female",label="Gender")
video_out = gr.Video(show_label=True,label="Output")
with gr.Row():
# with gr.Row().style(equal_height=True):
btn = gr.Button("Generate")
# gr.Markdown(
# """
# <p style='text-align: center;'>Feel free to give us your thoughts on this demo and please contact us at
# <a href="mailto:letstalk@pragnakalp.com" target="_blank">letstalk@pragnakalp.com</a>
# <p style='text-align: center;'>Developed by: <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs</a></p>
# """)
btn.click(one_shot, inputs=[image_in,input_text,gender], outputs=[video_out])
demo.queue()
demo.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
run() |