File size: 10,527 Bytes
f901e07
 
 
 
 
 
 
 
 
 
09bfede
f901e07
 
09bfede
f901e07
 
 
 
 
 
 
 
 
 
 
 
09bfede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f901e07
09bfede
f901e07
09bfede
 
 
 
 
 
 
 
 
 
 
 
 
 
f901e07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09bfede
f901e07
 
 
ea3b369
1ef6532
f901e07
09bfede
 
f901e07
 
 
 
09bfede
 
 
f901e07
09bfede
 
f901e07
09bfede
 
 
f901e07
09bfede
 
 
 
f901e07
09bfede
 
 
 
 
 
f901e07
 
 
09bfede
f901e07
09bfede
 
 
f901e07
09bfede
 
 
 
 
 
 
 
 
 
 
 
 
f901e07
09bfede
 
 
f901e07
09bfede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f901e07
09bfede
 
 
 
 
 
 
 
 
f901e07
09bfede
 
 
 
 
 
 
 
 
 
f901e07
09bfede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f901e07
09bfede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f901e07
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import gradio as gr
import os, subprocess, torchaudio
import torch
from PIL import Image
import gradio as gr
import soundfile
from gtts import gTTS
import tempfile
from pydub.generators import Sine
from pydub import AudioSegment
import dlib
import cv2
import imageio
import os
import ffmpeg
from io import BytesIO
import requests
import sys

python_path = sys.executable

from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.text_to_speech.hub_interface import TTSHubInterface

block = gr.Blocks()

def compute_aspect_preserved_bbox(bbox, increase_area, h, w):
    left, top, right, bot = bbox
    width = right - left
    height = bot - top

    width_increase = max(increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width))
    height_increase = max(increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height))

    left_t = int(left - width_increase * width)
    top_t = int(top - height_increase * height)
    right_t = int(right + width_increase * width)
    bot_t = int(bot + height_increase * height)

    left_oob = -min(0, left_t)
    right_oob = right - min(right_t, w)
    top_oob = -min(0, top_t)
    bot_oob = bot - min(bot_t, h)

    if max(left_oob, right_oob, top_oob, bot_oob) > 0:
        max_w = max(left_oob, right_oob)
        max_h = max(top_oob, bot_oob)
        if max_w > max_h:
            return left_t + max_w, top_t + max_w, right_t - max_w, bot_t - max_w
        else:
            return left_t + max_h, top_t + max_h, right_t - max_h, bot_t - max_h

    else:
        return (left_t, top_t, right_t, bot_t)

def crop_src_image(src_img, detector=None):
    if  detector is None:
        detector = dlib.get_frontal_face_detector()
    save_img='/content/image_pre.png'
    img = cv2.imread(src_img)
    faces = detector(img, 0)
    h, width, _ = img.shape
    if len(faces) > 0:
        bbox = [faces[0].left(), faces[0].top(),faces[0].right(), faces[0].bottom()]
        l = bbox[3]-bbox[1]
        bbox[1]= bbox[1]-l*0.1
        bbox[3]= bbox[3]-l*0.1
        bbox[1] = max(0,bbox[1])
        bbox[3] = min(h,bbox[3])
        bbox = compute_aspect_preserved_bbox(tuple(bbox), 0.5, img.shape[0], img.shape[1])
        img = img[bbox[1] :bbox[3] , bbox[0]:bbox[2]]
        img = cv2.resize(img, (256, 256))
        cv2.imwrite(save_img,img)
    else:
        img = cv2.resize(img,(256,256))
        cv2.imwrite(save_img, img)
    return save_img

def pad_image(image):
    w, h = image.size
    if w == h:
        return image
    elif w > h:
        new_image = Image.new(image.mode, (w, w), (0, 0, 0))
        new_image.paste(image, (0, (w - h) // 2))
        return new_image
    else:
        new_image = Image.new(image.mode, (h, h), (0, 0, 0))
        new_image.paste(image, ((h - w) // 2, 0))
        return new_image

def calculate(image_in, audio_in):
    waveform, sample_rate = torchaudio.load(audio_in)
    waveform = torch.mean(waveform, dim=0, keepdim=True)
    torchaudio.save("/content/audio.wav", waveform, sample_rate, encoding="PCM_S", bits_per_sample=16)
    image_in = image_in.replace("results/", "")
    print("****"*100)
    print(f" *#*#*# original image => {image_in}  *#*#*# ")
    if os.path.exists(image_in):
        print(f"image exists => {image_in}")
        image = Image.open(image_in)
    else:
        print("image not exists reading web image")
        image_url = "http://labelme.csail.mit.edu/Release3.0/Images/users/DNguyen91/face/m_unsexy_gr.jpg"
        response = requests.get(image_url)
        image = Image.open(BytesIO(response.content))
    print("****"*100)
    image = pad_image(image)
    # os.system(f"rm -rf /content/image.png")
    image.save("image.png")

    pocketsphinx_run = subprocess.run(['pocketsphinx', '-phone_align', 'yes', 'single', '/content/audio.wav'], check=True, capture_output=True)
    jq_run = subprocess.run(['jq', '[.w[]|{word: (.t | ascii_upcase | sub("<S>"; "sil") | sub("<SIL>"; "sil") | sub("\\\(2\\\)"; "") | sub("\\\(3\\\)"; "") | sub("\\\(4\\\)"; "") | sub("\\\[SPEECH\\\]"; "SIL") | sub("\\\[NOISE\\\]"; "SIL")), phones: [.w[]|{ph: .t | sub("\\\+SPN\\\+"; "SIL") | sub("\\\+NSN\\\+"; "SIL"), bg: (.b*100)|floor, ed: (.b*100+.d*100)|floor}]}]'], input=pocketsphinx_run.stdout, capture_output=True)
    with open("test.json", "w") as f:
        f.write(jq_run.stdout.decode('utf-8').strip())
    # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    # os.system(f"rm -rf /content/image_audio.mp4")
    os.system(f"cd /content/one-shot-talking-face && {python_path} -B test_script.py --img_path /content/image.png --audio_path /content/audio.wav --phoneme_path /content/test.json --save_dir /content/train")
    return "/content/train/image_audio.mp4"

def merge_frames():


  path = '/content/video_results/restored_imgs'
    
  if not os.path.exists(path):
      os.makedirs(path)
        
  image_folder = os.fsencode(path)
  print(image_folder)
  filenames = []

  for file in os.listdir(image_folder):
      filename = os.fsdecode(file)
      if filename.endswith( ('.jpg', '.png', '.gif') ):
          filenames.append(filename)

  filenames.sort() # this iteration technique has no built in order, so sort the frames
  print(filenames)
  images = list(map(lambda filename: imageio.imread("/content/video_results/restored_imgs/"+filename), filenames))
  # os.system(f"rm -rf /content/video_output.mp4")
  imageio.mimsave('/content/video_output.mp4', images, fps=25.0) # modify the frame duration as needed
  return "/content/video_output.mp4"

def audio_video():

  input_video = ffmpeg.input('/content/video_output.mp4')

  input_audio = ffmpeg.input('/content/audio.wav')
  os.system(f"rm -rf /content/final_output.mp4")
  ffmpeg.concat(input_video, input_audio, v=1, a=1).output('/content/final_output.mp4').run()
  
  return "/content/final_output.mp4"

def one_shot_talking(image_in,audio_in):


  # Pre-processing of image
  crop_img=crop_src_image(image_in)

  if os.path.exists("/content/results/restored_imgs/image_pre.png"):
    os.system(f"rm -rf /content/results/restored_imgs/image_pre.png")
  
  if not os.path.exists( "/content/results" ):
    os.makedirs("/content/results")
  
  #Improve quality of input image
  os.system(f"{python_path} /content/GFPGAN/inference_gfpgan.py --upscale 2 -i /content/image_pre.png -o /content/results --bg_upsampler realesrgan")
  # time.sleep(60)
  
  image_in_one_shot='/content/results/image_pre.png'
  
  #One Shot Talking Face algorithm
  calculate(image_in_one_shot,audio_in)

  #Video Quality Improvement
  os.system(f"rm -rf /content/extracted_frames/image_audio_frames")
  #1. Extract the frames from the video file using PyVideoFramesExtractor
  os.system(f"{python_path} /content/PyVideoFramesExtractor/extract.py --video=/content/train/image_audio.mp4")

  #2. Improve image quality using GFPGAN on each frames
  # os.system(f"rm -rf /content/extracted_frames/image_audio_frames")
  os.system(f"rm -rf /content/video_results/")
  os.system(f"{python_path} /content/GFPGAN/inference_gfpgan.py --upscale 2 -i /content/extracted_frames/image_audio_frames -o /content/video_results  --bg_upsampler realesrgan")

  #3. Merge all the frames to a one video using imageio
  merge_frames()
  return audio_video()


def one_shot(image_in,input_text,gender):
    if gender == "Female":
         tts = gTTS(input_text)
         with tempfile.NamedTemporaryFile(suffix='.mp3', delete=False) as f:
              tts.write_to_fp(f)
              f.seek(0)
              sound = AudioSegment.from_file(f.name, format="mp3")
              os.system(f"rm -rf /content/audio.wav")
              sound.export("/content/audio.wav", format="wav")
              audio_in="/content/audio.wav"
         return one_shot_talking(image_in,audio_in)
    elif gender == 'Male':
       
          models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
              "Voicemod/fastspeech2-en-male1",
              arg_overrides={"vocoder": "hifigan", "fp16": False}
          )

          model = models[0]
          TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg)
          generator = task.build_generator([model], cfg)
          # next(model.parameters()).device

          sample = TTSHubInterface.get_model_input(task, input_text)
          sample["net_input"]["src_tokens"] = sample["net_input"]["src_tokens"]
          sample["net_input"]["src_lengths"] = sample["net_input"]["src_lengths"]
          sample["speaker"] = sample["speaker"]

          wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample)
          # soundfile.write("/content/audio_before.wav", wav, rate)
          os.system(f"rm -rf /content/audio_before.wav")
          soundfile.write("/content/audio_before.wav", wav.cpu().clone().numpy(), rate)
          os.system(f"rm -rf /content/audio.wav")
          cmd='ffmpeg -i /content/audio_before.wav -filter:a "atempo=0.7" -vn /content/audio.wav'
          os.system(cmd)
          audio_in="/content/audio.wav"
          
          return one_shot_talking(image_in,audio_in)
           
                        
def run():
  with gr.Blocks(css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}") as demo:
    gr.Markdown("<h1 style='text-align: center;'>"+ "One Shot Talking Face from Text" + "</h1><br/><br/>")
    with gr.Group():
      # with gr.Box():
        with gr.Row():
        # with gr.Row().style(equal_height=True):
          image_in = gr.Image(show_label=True, type="filepath",label="Input Image")
          input_text = gr.Textbox(show_label=True,label="Input Text")
          gender = gr.Radio(["Female","Male"],value="Female",label="Gender")
          video_out = gr.Video(show_label=True,label="Output")
        with gr.Row():
        # with gr.Row().style(equal_height=True):
          btn = gr.Button("Generate")   
    # gr.Markdown(
    #         """
    #         <p style='text-align: center;'>Feel free to give us your thoughts on this demo and please contact us at 
    #                 <a href="mailto:letstalk@pragnakalp.com" target="_blank">letstalk@pragnakalp.com</a> 
    #                 <p style='text-align: center;'>Developed by: <a href="https://www.pragnakalp.com" target="_blank">Pragnakalp Techlabs</a></p>

    #         """)

    btn.click(one_shot, inputs=[image_in,input_text,gender], outputs=[video_out])
    demo.queue()
    demo.launch(server_name="0.0.0.0", server_port=7860)

if __name__ == "__main__":
    run()