Spaces:
Running
Running
File size: 4,946 Bytes
3c82b91 bef5e01 f0ed851 cb5876d 5b4920d cb5876d 5b4920d cb5876d 7023483 cb5876d c6a2c72 b457150 57e4f69 b457150 cb5876d 3c82b91 7023483 3c82b91 7023483 3c82b91 d1fca03 3c82b91 d1fca03 3c82b91 cb5876d d1fca03 3c82b91 0507acf faa241b c6a2c72 cb5876d c6a2c72 1d07330 cb5876d 0507acf cb5876d 1d07330 c6a2c72 1d07330 cb5876d 1d07330 d27688f cb5876d bc08c08 cb5876d 98b19c7 cb5876d bd0f1db cb5876d c6a2c72 7023483 d1fca03 7023483 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import gc
import os
import csv
import socket
import huggingface_hub
import gradio as gr
import pandas as pd
from huggingface_hub import Repository
from transformers import AutoTokenizer, AutoModelWithLMHead
## connection with HF datasets
HF_TOKEN = os.environ.get("HF_TOKEN")
DATASET_NAME = "emotion_detection"
DATASET_REPO_URL = f"https://huggingface.co/datasets/pragnakalp/{DATASET_NAME}"
DATA_FILENAME = "emotion_detection_logs.csv"
DATA_FILE = os.path.join("emotion_detection_logs", DATA_FILENAME)
DATASET_REPO_ID = "pragnakalp/emotion_detection"
print("is none?", HF_TOKEN is None)
try:
hf_hub_download(
repo_id=DATASET_REPO_ID,
filename=DATA_FILENAME,
cache_dir=DATA_DIRNAME,
force_filename=DATA_FILENAME
)
except:
print("file not found")
repo = Repository(
local_dir="emotion_detection_logs", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)
SENTENCES_VALUE = """Raj loves Simran.\nLast year I lost my Dog.\nI bought a new phone!\nShe is scared of cockroaches.\nWow! I was not expecting that.\nShe got mad at him."""
## load model
cwd = os.getcwd()
model_path = os.path.join(cwd)
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-emotion")
model_base = AutoModelWithLMHead.from_pretrained(model_path)
"""
get ip address
"""
def get_device_ip_address():
result = {}
if os.name == "nt":
result = "Running on Windows"
hostname = socket.gethostname()
ip_address = socket.gethostbyname(hostname)
result['ip_addr'] = ip_address
result['host'] = hostname
print(result)
return result
elif os.name == "posix":
gw = os.popen("ip -4 route show default").read().split()
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.connect((gw[2], 0))
ipaddr = s.getsockname()[0]
gateway = gw[2]
host = socket.gethostname()
result['ip_addr'] = ipaddr
result['host'] = host
print(result)
return result
else:
result['id'] = os.name + " not supported yet."
print(result)
return result
"""
generate emotions of the sentences
"""
def get_emotion(text):
# input_ids = tokenizer.encode(text + '</s>', return_tensors='pt')
input_ids = tokenizer.encode(text, return_tensors='pt')
output = model_base.generate(input_ids=input_ids,
max_length=2)
dec = [tokenizer.decode(ids) for ids in output]
label = dec[0]
gc.collect()
return label
def generate_emotion(article):
sen_list = article
sen_list = sen_list.split('\n')
sen_list_temp = sen_list[0:]
print(sen_list_temp)
results_dict = []
results = []
for sen in sen_list_temp:
if(sen.strip()):
cur_result = get_emotion(sen)
results.append(cur_result)
results_dict.append(
{
'sentence': sen,
'emotion': cur_result
}
)
result = {'Input':sen_list_temp, 'Detected Emotion':results}
gc.collect()
print("sen_list@ ",sen_list)
print("results_dict@ ",results_dict)
save_data_and_sendmail(article,results_dict,sen_list, results)
return pd.DataFrame(result)
"""
Save generated details
"""
def save_data_and_sendmail(article,results_dict,sen_list,results):
try:
print("sen_list ",sen_list)
print("results_dict ",results_dict)
hostname = {}
hostname = get_device_ip_address()
add_csv = [article,results_dict,hostname.get("ip_addr","")]
with open(DATA_FILE, "a") as f:
writer = csv.writer(f)
# write the data
writer.writerow(add_csv)
commit_url = repo.push_to_hub()
print("commit data :",commit_url)
url = 'https://pragnakalpdev33.pythonanywhere.com/hf_space_emotion_detection'
# url = 'http://pragnakalpdev33.pythonanywhere.com/HF_space_question_generator'
myobj = {"sentences":sen_list,"gen_results":results,"ip_addr":hostname.get("ip_addr",""),"host":hostname.get("host","")}
x = requests.post(url, json = myobj)
print("myobj ",myobj)
except Exception as e:
return "Error while sending mail" + str(e)
return "Successfully save data"
"""
UI design for demo using gradio app
"""
inputs = gr.Textbox(value=SENTENCES_VALUE,lines=10, label="Sentences",elem_id="inp_div")
outputs = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(2, "fixed"), label="Here is the Result", headers=["Input","Detected Emotion"])]
demo = gr.Interface(
generate_emotion,
inputs,
outputs,
title="Emotion Detection",
description="Feel free to give your feedback",
css=".gradio-container {background-color: lightgray} #inp_div {background-color: #FB3D5;}"
)
demo.launch() |