File size: 4,315 Bytes
7023483
3c82b91
 
bef5e01
f0ed851
d1fca03
5b4920d
 
7023483
c6a2c72
 
 
 
 
 
 
 
 
0cc82f8
 
3c82b91
 
c6a2c72
b457150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c82b91
7023483
3c82b91
 
 
 
7023483
3c82b91
 
 
 
 
 
 
d1fca03
3c82b91
d1fca03
3c82b91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1fca03
 
 
 
3c82b91
c6a2c72
 
 
 
 
 
 
7023483
c6a2c72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1fca03
c6a2c72
 
7023483
 
 
 
 
 
 
d1fca03
7023483
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
from transformers import AutoTokenizer, AutoModelWithLMHead 
import gc
import os
import csv
import pandas as pd
import huggingface_hub
from huggingface_hub import Repository

HF_TOKEN = os.environ.get("HF_TOKEN")
DATASET_NAME = "emotion_detection"
DATASET_REPO_URL = f"https://huggingface.co/datasets/pragnakalp/{DATASET_NAME}"
DATA_FILENAME = "emotion_detection_logs.csv"
DATA_FILE = os.path.join("emotion_detection_logs", DATA_FILENAME)
DATASET_REPO_ID = "pragnakalp/emotion_detection"
print("is none?", HF_TOKEN is None)

sentences_value = """Raj loves Simran.\nLast year I lost my Dog.\nI bought a new phone!\nShe is scared of cockroaches.\nWow! I was not expecting that.\nShe got mad at him."""
cwd = os.getcwd()
model_path = os.path.join(cwd)
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-emotion")
model_base = AutoModelWithLMHead.from_pretrained(model_path)

try:
    hf_hub_download(
        repo_id=DATASET_REPO_ID,
        filename=DATA_FILENAME,
        cache_dir=DATA_DIRNAME,
        force_filename=DATA_FILENAME
    )
    
except:
    print("file not found")

repo = Repository(
    local_dir="que_gen_logs", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)

def get_emotion(text):

    # input_ids = tokenizer.encode(text + '</s>', return_tensors='pt')
    input_ids = tokenizer.encode(text, return_tensors='pt')
    output = model_base.generate(input_ids=input_ids,
                                 max_length=2)

    dec = [tokenizer.decode(ids) for ids in output]
    label = dec[0]
    gc.collect()
    return label

def generate_emotion(article):
    sen_list = article
    sen_list = sen_list.split('\n')
    sen_list_temp = sen_list[0:]
    print(sen_list_temp)
    results_dict = []
    results = []

    for sen in sen_list_temp:
        if(sen.strip()):
            cur_result = get_emotion(sen)

            results.append(cur_result)
            results_dict.append(
                {
                    'sentence': sen,
                    'emotion': cur_result
                }
            )

    # result = {
    #     'result': results_dict,
    # }
    result = {'Input':sen_list_temp, 'Detected Emotion':results}
    gc.collect()
    add_csv = [results_dict]
    with open(DATA_FILE, "a") as f:
        writer = csv.writer(f)
        # write the data
        writer.writerow(add_csv)
        commit_url = repo.push_to_hub()
        print("commit data   :",commit_url)

    return pd.DataFrame(result)
"""
Save generated details
"""
# def save_data_and_sendmail(article,generated_questions,num_que,result):
#     try:
#         hostname = {}
#         hostname = get_device_ip_address()
#         url = 'https://pragnakalpdev35.pythonanywhere.com/HF_space_que_gen'
#         # url = 'http://pragnakalpdev33.pythonanywhere.com/HF_space_question_generator'
#         myobj = {'article': article,'total_que': num_que,'gen_que':result,'ip_addr':hostname.get("ip_addr",""),'host':hostname.get("host","")}
#         x = requests.post(url, json = myobj) 
#         add_csv = [article, generated_questions, num_que]
#         with open(DATA_FILE, "a") as f:
#             writer = csv.writer(f)
#             # write the data
#             writer.writerow(add_csv)
#             commit_url = repo.push_to_hub()
#             print("commit data   :",commit_url)
#     # except Exception as e:
#     #     return "Error while storing data -->" + e
        
#     # try:  
#         # with open(DATA_FILE, "r") as file:
#         #     data = json.load(file)
#         # data.append(entry)
#         # with open(DATA_FILE, "w") as file:
#         #     json.dump(data, file)
#         #     commit_url = repo.push_to_hub()
#     except Exception as e:
#         return "Error while sending mail" + e
        
#     return "Successfully save data"

inputs = gr.Textbox(value=sentences_value,lines=10, label="Sentences",elem_id="inp_div")
outputs = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(2, "fixed"), label="Here is the Result", headers=["Input","Detected Emotion"])]

demo = gr.Interface(
    generate_emotion,
    inputs,
    outputs,
    title="Emotion Detection",
    description="Feel free to give your feedback", 
    css=".gradio-container {background-color: lightgray} #inp_div {background-color: #FB3D5;}"
)
demo.launch()