File size: 4,761 Bytes
3c82b91
bef5e01
f0ed851
cb5876d
5b4920d
cb5876d
 
 
 
5b4920d
cb5876d
 
7023483
cb5876d
c6a2c72
 
 
 
 
 
 
b457150
 
 
 
 
 
 
 
 
 
 
 
57e4f69
b457150
 
cb5876d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c82b91
7023483
3c82b91
 
 
 
7023483
3c82b91
 
 
 
 
 
 
d1fca03
3c82b91
d1fca03
3c82b91
 
 
 
 
 
 
 
 
 
 
 
 
 
cb5876d
d1fca03
3c82b91
cb5876d
c6a2c72
cb5876d
c6a2c72
 
 
cb5876d
 
 
c6a2c72
cb5876d
 
 
 
 
 
 
c6a2c72
cb5876d
3b92fb1
cb5876d
 
 
3b92fb1
cb5876d
 
 
 
 
 
 
 
 
 
 
c6a2c72
7023483
 
 
 
 
 
 
d1fca03
7023483
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gc
import os
import csv
import socket
import huggingface_hub

import gradio as gr
import pandas as pd

from huggingface_hub import Repository
from transformers import AutoTokenizer, AutoModelWithLMHead 


## connection with HF datasets
HF_TOKEN = os.environ.get("HF_TOKEN")
DATASET_NAME = "emotion_detection"
DATASET_REPO_URL = f"https://huggingface.co/datasets/pragnakalp/{DATASET_NAME}"
DATA_FILENAME = "emotion_detection_logs.csv"
DATA_FILE = os.path.join("emotion_detection_logs", DATA_FILENAME)
DATASET_REPO_ID = "pragnakalp/emotion_detection"
print("is none?", HF_TOKEN is None)
try:
    hf_hub_download(
        repo_id=DATASET_REPO_ID,
        filename=DATA_FILENAME,
        cache_dir=DATA_DIRNAME,
        force_filename=DATA_FILENAME
    )
    
except:
    print("file not found")

repo = Repository(
    local_dir="emotion_detection_logs", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)

SENTENCES_VALUE = """Raj loves Simran.\nLast year I lost my Dog.\nI bought a new phone!\nShe is scared of cockroaches.\nWow! I was not expecting that.\nShe got mad at him."""
## load model
cwd = os.getcwd()
model_path = os.path.join(cwd)
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-emotion")
model_base = AutoModelWithLMHead.from_pretrained(model_path)

"""
get ip address
"""
def get_device_ip_address():
    result = {}
    if os.name == "nt":
        result = "Running on Windows"
        hostname = socket.gethostname()
        ip_address = socket.gethostbyname(hostname)
        result['ip_addr'] = ip_address
        result['host'] = hostname
        print(result)
        return result
    elif os.name == "posix":
        gw = os.popen("ip -4 route show default").read().split()
        s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
        s.connect((gw[2], 0))
        ipaddr = s.getsockname()[0]
        gateway = gw[2]
        host = socket.gethostname()
        result['ip_addr'] = ipaddr
        result['host'] = host
        print(result)
        return result
    else:
        result['id'] = os.name + " not supported yet."
        print(result)
        return result

"""
generate emotions of the sentences
"""
def get_emotion(text):

    # input_ids = tokenizer.encode(text + '</s>', return_tensors='pt')
    input_ids = tokenizer.encode(text, return_tensors='pt')
    output = model_base.generate(input_ids=input_ids,
                                 max_length=2)

    dec = [tokenizer.decode(ids) for ids in output]
    label = dec[0]
    gc.collect()
    return label

def generate_emotion(article):
    sen_list = article
    sen_list = sen_list.split('\n')
    sen_list_temp = sen_list[0:]
    print(sen_list_temp)
    results_dict = []
    results = []

    for sen in sen_list_temp:
        if(sen.strip()):
            cur_result = get_emotion(sen)

            results.append(cur_result)
            results_dict.append(
                {
                    'sentence': sen,
                    'emotion': cur_result
                }
            )
            
    result = {'Input':sen_list_temp, 'Detected Emotion':results}
    gc.collect()
    save_data_and_sendmail(results_dict,sen_list, results)
    return pd.DataFrame(result)
    
"""
Save generated details
"""
def save_data_and_sendmail(results_dict,sen_list,results):
    try:
        hostname = {}
        
        add_csv = [results_dict]
        with open(DATA_FILE, "a") as f:
            writer = csv.writer(f)
            # write the data
            writer.writerow(add_csv)
            commit_url = repo.push_to_hub()
            print("commit data   :",commit_url)
        
        hostname = get_device_ip_address()
        print("hostname    ",hostname)
        url = 'https://pragnakalpdev35.pythonanywhere.com/hf_space_emotion_detection'
        # url = 'http://pragnakalpdev33.pythonanywhere.com/HF_space_question_generator'
        myobj = {'sen_list': sen_list,'gen_results': results,'ip_addr':hostname.get("ip_addr",""),'host':hostname.get("host","")}
        print("myobj    ",myobj)
        x = requests.post(url, json = myobj) 
            
    except Exception as e:
        return "Error while sending mail" + e
        
    return "Successfully save data"
    
"""
UI design for demo using gradio app
"""
inputs = gr.Textbox(value=SENTENCES_VALUE,lines=10, label="Sentences",elem_id="inp_div")
outputs = [gr.Dataframe(row_count = (2, "dynamic"), col_count=(2, "fixed"), label="Here is the Result", headers=["Input","Detected Emotion"])]

demo = gr.Interface(
    generate_emotion,
    inputs,
    outputs,
    title="Emotion Detection",
    description="Feel free to give your feedback", 
    css=".gradio-container {background-color: lightgray} #inp_div {background-color: #FB3D5;}"
)
demo.launch()