Spaces:
Sleeping
Sleeping
File size: 8,418 Bytes
8920961 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import time
import gc
import os
import psutil
# Configuration
BASE_MODEL = "microsoft/phi-2"
ADAPTER_MODEL = "pradeep6kumar2024/phi2-qlora-assistant"
# Memory monitoring
def get_memory_usage():
process = psutil.Process(os.getpid())
return process.memory_info().rss / (1024 * 1024) # MB
class ModelWrapper:
def __init__(self):
self.model = None
self.tokenizer = None
self.loaded = False
def load_model(self):
if not self.loaded:
try:
# Force CPU usage
os.environ["CUDA_VISIBLE_DEVICES"] = ""
device = torch.device("cpu")
# Clear memory
gc.collect()
print(f"Memory before loading: {get_memory_usage():.2f} MB")
print("Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(
BASE_MODEL,
trust_remote_code=True,
padding_side="left"
)
self.tokenizer.pad_token = self.tokenizer.eos_token
print(f"Memory after tokenizer: {get_memory_usage():.2f} MB")
print("Loading base model...")
base_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
torch_dtype=torch.float32,
device_map="cpu",
trust_remote_code=True,
use_flash_attention_2=False,
low_cpu_mem_usage=True,
offload_folder="offload"
)
print(f"Memory after base model: {get_memory_usage():.2f} MB")
print("Loading LoRA adapter...")
self.model = PeftModel.from_pretrained(
base_model,
ADAPTER_MODEL,
torch_dtype=torch.float32,
device_map="cpu"
)
# Free up memory
del base_model
gc.collect()
print(f"Memory after adapter: {get_memory_usage():.2f} MB")
self.model.eval()
print("Model loading complete!")
self.loaded = True
except Exception as e:
print(f"Error during model loading: {str(e)}")
raise
def generate_response(self, prompt, max_length=256, temperature=0.7, top_p=0.9):
if not self.loaded:
self.load_model()
try:
# Use shorter prompts to save memory
if "function" in prompt.lower() and "python" in prompt.lower():
enhanced_prompt = f"""Write Python function: {prompt}"""
elif any(word in prompt.lower() for word in ["explain", "what is", "how does", "describe"]):
enhanced_prompt = f"""Explain briefly: {prompt}"""
else:
enhanced_prompt = prompt
print(f"Enhanced prompt: {enhanced_prompt}")
# Tokenize input with shorter max length
inputs = self.tokenizer(
enhanced_prompt,
return_tensors="pt",
truncation=True,
max_length=256, # Reduced for memory
padding=True
).to("cpu")
# Generate with minimal parameters
start_time = time.time()
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_length=min(max_length, 256), # Strict limit
min_length=10, # Reduced minimum
temperature=min(0.5, temperature),
top_p=min(0.85, top_p),
do_sample=True,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
repetition_penalty=1.2,
no_repeat_ngram_size=3,
num_return_sequences=1,
early_stopping=True,
num_beams=1, # Greedy decoding to save memory
length_penalty=0.6
)
# Decode response
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Clean up the response
if response.startswith(enhanced_prompt):
response = response[len(enhanced_prompt):].strip()
# Basic cleanup only
response = response.replace("Human:", "").replace("Assistant:", "")
# Ensure code examples are properly formatted
if "```python" not in response and "def " in response:
response = "```python\n" + response + "\n```"
# Simple validation
if len(response.strip()) < 10:
if "function" in prompt.lower():
fallback_response = """```python
def add_numbers(a, b):
return a + b
```"""
else:
fallback_response = "I apologize, but I couldn't generate a response. Please try with a simpler prompt."
response = fallback_response
# Clear memory after generation
gc.collect()
generation_time = time.time() - start_time
return response, generation_time
except Exception as e:
print(f"Error during generation: {str(e)}")
raise
# Initialize model wrapper
model_wrapper = ModelWrapper()
def generate_text(prompt, max_length=256, temperature=0.5, top_p=0.85):
"""Gradio interface function"""
try:
if not prompt.strip():
return "Please enter a prompt."
response, gen_time = model_wrapper.generate_response(
prompt,
max_length=max_length,
temperature=temperature,
top_p=top_p
)
return f"Generated in {gen_time:.2f} seconds:\n\n{response}"
except Exception as e:
print(f"Error in generate_text: {str(e)}")
return f"Error generating response: {str(e)}\nPlease try again with a shorter prompt."
# Create a very lightweight Gradio interface
demo = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(
label="Enter your prompt",
placeholder="Type your prompt here...",
lines=3
),
gr.Slider(
minimum=64,
maximum=256,
value=192,
step=32,
label="Maximum Length",
info="Keep this low for CPU"
),
gr.Slider(
minimum=0.1,
maximum=0.7,
value=0.4,
step=0.1,
label="Temperature",
info="Lower is better for CPU"
),
gr.Slider(
minimum=0.5,
maximum=0.9,
value=0.8,
step=0.1,
label="Top P",
info="Controls diversity"
),
],
outputs=gr.Textbox(label="Generated Response", lines=6),
title="Phi-2 QLoRA Assistant (CPU-Optimized)",
description="""This is a lightweight CPU version of the fine-tuned Phi-2 model.
Tips:
- Keep prompts short and specific
- Use lower maximum length (128-192) for faster responses
- Use lower temperature (0.3-0.5) for more reliable responses
""",
examples=[
[
"Write a Python function to calculate factorial",
192,
0.4,
0.8
],
[
"Explain machine learning simply",
192,
0.4,
0.8
],
[
"Write a short email to schedule a meeting",
192,
0.4,
0.8
]
],
cache_examples=False,
concurrency_limit=1 # Use the correct parameter for limiting concurrency
)
if __name__ == "__main__":
demo.launch(max_threads=1) # Limit the number of worker threads |