File size: 8,418 Bytes
8920961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import time
import gc
import os
import psutil

# Configuration
BASE_MODEL = "microsoft/phi-2"
ADAPTER_MODEL = "pradeep6kumar2024/phi2-qlora-assistant"

# Memory monitoring
def get_memory_usage():
    process = psutil.Process(os.getpid())
    return process.memory_info().rss / (1024 * 1024)  # MB

class ModelWrapper:
    def __init__(self):
        self.model = None
        self.tokenizer = None
        self.loaded = False
        
    def load_model(self):
        if not self.loaded:
            try:
                # Force CPU usage
                os.environ["CUDA_VISIBLE_DEVICES"] = ""
                device = torch.device("cpu")
                
                # Clear memory
                gc.collect()
                
                print(f"Memory before loading: {get_memory_usage():.2f} MB")
                
                print("Loading tokenizer...")
                self.tokenizer = AutoTokenizer.from_pretrained(
                    BASE_MODEL,
                    trust_remote_code=True,
                    padding_side="left"
                )
                self.tokenizer.pad_token = self.tokenizer.eos_token
                
                print(f"Memory after tokenizer: {get_memory_usage():.2f} MB")
                
                print("Loading base model...")
                base_model = AutoModelForCausalLM.from_pretrained(
                    BASE_MODEL,
                    torch_dtype=torch.float32,
                    device_map="cpu",
                    trust_remote_code=True,
                    use_flash_attention_2=False,
                    low_cpu_mem_usage=True,
                    offload_folder="offload"
                )
                
                print(f"Memory after base model: {get_memory_usage():.2f} MB")
                
                print("Loading LoRA adapter...")
                self.model = PeftModel.from_pretrained(
                    base_model,
                    ADAPTER_MODEL,
                    torch_dtype=torch.float32,
                    device_map="cpu"
                )
                
                # Free up memory
                del base_model
                gc.collect()
                
                print(f"Memory after adapter: {get_memory_usage():.2f} MB")
                
                self.model.eval()
                print("Model loading complete!")
                self.loaded = True
            except Exception as e:
                print(f"Error during model loading: {str(e)}")
                raise
    
    def generate_response(self, prompt, max_length=256, temperature=0.7, top_p=0.9):
        if not self.loaded:
            self.load_model()
        
        try:
            # Use shorter prompts to save memory
            if "function" in prompt.lower() and "python" in prompt.lower():
                enhanced_prompt = f"""Write Python function: {prompt}"""
            elif any(word in prompt.lower() for word in ["explain", "what is", "how does", "describe"]):
                enhanced_prompt = f"""Explain briefly: {prompt}"""
            else:
                enhanced_prompt = prompt
            
            print(f"Enhanced prompt: {enhanced_prompt}")
            
            # Tokenize input with shorter max length
            inputs = self.tokenizer(
                enhanced_prompt,
                return_tensors="pt",
                truncation=True,
                max_length=256,  # Reduced for memory
                padding=True
            ).to("cpu")
            
            # Generate with minimal parameters
            start_time = time.time()
            with torch.no_grad():
                outputs = self.model.generate(
                    **inputs,
                    max_length=min(max_length, 256),  # Strict limit
                    min_length=10,  # Reduced minimum
                    temperature=min(0.5, temperature),
                    top_p=min(0.85, top_p),
                    do_sample=True,
                    pad_token_id=self.tokenizer.pad_token_id,
                    eos_token_id=self.tokenizer.eos_token_id,
                    repetition_penalty=1.2,
                    no_repeat_ngram_size=3,
                    num_return_sequences=1,
                    early_stopping=True,
                    num_beams=1,  # Greedy decoding to save memory
                    length_penalty=0.6
                )
            
            # Decode response
            response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
            
            # Clean up the response
            if response.startswith(enhanced_prompt):
                response = response[len(enhanced_prompt):].strip()
            
            # Basic cleanup only
            response = response.replace("Human:", "").replace("Assistant:", "")
            
            # Ensure code examples are properly formatted
            if "```python" not in response and "def " in response:
                response = "```python\n" + response + "\n```"
            
            # Simple validation
            if len(response.strip()) < 10:
                if "function" in prompt.lower():
                    fallback_response = """```python
def add_numbers(a, b):
    return a + b
```"""
                else:
                    fallback_response = "I apologize, but I couldn't generate a response. Please try with a simpler prompt."
                
                response = fallback_response
            
            # Clear memory after generation
            gc.collect()
            
            generation_time = time.time() - start_time
            return response, generation_time
        except Exception as e:
            print(f"Error during generation: {str(e)}")
            raise

# Initialize model wrapper
model_wrapper = ModelWrapper()

def generate_text(prompt, max_length=256, temperature=0.5, top_p=0.85):
    """Gradio interface function"""
    try:
        if not prompt.strip():
            return "Please enter a prompt."
        
        response, gen_time = model_wrapper.generate_response(
            prompt, 
            max_length=max_length,
            temperature=temperature,
            top_p=top_p
        )
        return f"Generated in {gen_time:.2f} seconds:\n\n{response}"
    except Exception as e:
        print(f"Error in generate_text: {str(e)}")
        return f"Error generating response: {str(e)}\nPlease try again with a shorter prompt."

# Create a very lightweight Gradio interface
demo = gr.Interface(
    fn=generate_text,
    inputs=[
        gr.Textbox(
            label="Enter your prompt",
            placeholder="Type your prompt here...",
            lines=3
        ),
        gr.Slider(
            minimum=64,
            maximum=256,
            value=192,
            step=32,
            label="Maximum Length",
            info="Keep this low for CPU"
        ),
        gr.Slider(
            minimum=0.1,
            maximum=0.7,
            value=0.4,
            step=0.1,
            label="Temperature",
            info="Lower is better for CPU"
        ),
        gr.Slider(
            minimum=0.5,
            maximum=0.9,
            value=0.8,
            step=0.1,
            label="Top P",
            info="Controls diversity"
        ),
    ],
    outputs=gr.Textbox(label="Generated Response", lines=6),
    title="Phi-2 QLoRA Assistant (CPU-Optimized)",
    description="""This is a lightweight CPU version of the fine-tuned Phi-2 model.
    
    Tips:
    - Keep prompts short and specific
    - Use lower maximum length (128-192) for faster responses
    - Use lower temperature (0.3-0.5) for more reliable responses
    """,
    examples=[
        [
            "Write a Python function to calculate factorial", 
            192, 
            0.4, 
            0.8
        ],
        [
            "Explain machine learning simply", 
            192, 
            0.4, 
            0.8
        ],
        [
            "Write a short email to schedule a meeting", 
            192, 
            0.4, 
            0.8
        ]
    ],
    cache_examples=False,
    concurrency_limit=1  # Use the correct parameter for limiting concurrency
)

if __name__ == "__main__":
    demo.launch(max_threads=1)  # Limit the number of worker threads