Spaces:
Sleeping
Sleeping
File size: 18,699 Bytes
95f7f0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
from ultralytics import YOLO
import base64
import cv2
import io
import numpy as np
from ultralytics.utils.plotting import Annotator
import streamlit as st
from streamlit_image_coordinates import streamlit_image_coordinates
import pandas as pd
import ollama
import bs4
import tempfile
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.document_loaders import CSVLoader
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import OllamaEmbeddings
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
def set_background(image_file1,image_file2):
with open(image_file1, "rb") as f:
img_data1 = f.read()
b64_encoded1 = base64.b64encode(img_data1).decode()
with open(image_file2, "rb") as f:
img_data2 = f.read()
b64_encoded2 = base64.b64encode(img_data2).decode()
style = f"""
<style>
.stApp{{
background-image: url(data:image/png;base64,{b64_encoded1});
background-size: cover;
}}
.st-emotion-cache-6qob1r{{
background-image: url(data:image/png;base64,{b64_encoded2});
background-size: cover;
border: 5px solid rgb(14, 17, 23);
}}
</style>
"""
st.markdown(style, unsafe_allow_html=True)
set_background('pngtree-city-map-navigation-interface-picture-image_1833642.png','2024-05-18_14-57-09_5235.png')
st.title("Traffic Flow and Optimization Toolkit")
sb = st.sidebar # defining the sidebar
sb.markdown("🛰️ **Navigation**")
page_names = ["PS1", "PS2", "PS3","Chat with Results"]
page = sb.radio("", page_names, index=0)
st.session_state['n'] = sb.slider("Number of ROIs",1,5)
if page == 'PS1':
uploaded_file = st.file_uploader("Choose a video...", type=["mp4", "mpeg"])
model = YOLO('yolov8n.pt')
if uploaded_file is not None:
with tempfile.NamedTemporaryFile(delete=False) as temp:
temp.write(uploaded_file.read())
if 'roi_list1' not in st.session_state:
st.session_state['roi_list1'] = []
if "all_rois1" not in st.session_state:
st.session_state['all_rois1'] = []
classes = model.names
done_1 = st.button('Selection Done')
while len(st.session_state["all_rois1"]) < st.session_state['n']:
cap = cv2.VideoCapture(temp.name)
while not done_1:
ret,frame=cap.read()
cv2.putText(frame,'SELECT ROI',(100,100),cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,255),4)
if not ret:
st.write('ROI selection unsuccessfull')
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
value = streamlit_image_coordinates(frame,key='numpy',width=750)
st.session_state["roi_list1"].append([int(value['x']*2.55),int(value['y']*2.55)])
st.write(st.session_state["roi_list1"])
if cv2.waitKey(0)&0xFF==27:
break
cap.release()
st.session_state["all_rois1"].append(st.session_state["roi_list1"])
st.session_state["roi_list1"] = []
done_1 = False
st.write('ROI indices: ',st.session_state["all_rois1"][0])
cap = cv2.VideoCapture(temp.name)
st.write("Detection started")
st.session_state['fps'] = cap.get(cv2.CAP_PROP_FPS)
st.write(f"FPS OF VIDEO: {st.session_state['fps']}")
avg_list = []
count = 0
frame_placeholder = st.empty()
st.session_state["data1"] = {}
for i in range(len(st.session_state["all_rois1"])):
st.session_state["data1"][f"ROI{i}"] = []
while cap.isOpened():
ret,frame=cap.read()
if not ret:
break
count += 1
if count % 3 != 0:
continue
k = 0
for roi_list_here1 in st.session_state["all_rois1"]:
max = [0,0]
min = [10000,10000]
roi_list_here = roi_list_here1[1:]
for i in range(len(roi_list_here)):
if roi_list_here[i][0] > max[0]:
max[0] = roi_list_here[i][0]
if roi_list_here[i][1] > max[1]:
max[1] = roi_list_here[i][1]
if roi_list_here[i][0] < min[0]:
min[0] = roi_list_here[i][0]
if roi_list_here[i][1] < min[1]:
min[1] = roi_list_here[i][1]
frame_cropped = frame[min[1]:max[1],min[0]:max[0]]
roi_corners = np.array([roi_list_here],dtype=np.int32)
mask = np.zeros(frame.shape,dtype=np.uint8)
mask.fill(255)
channel_count = frame.shape[2]
ignore_mask_color = (255,)*channel_count
cv2.fillPoly(mask,roi_corners,0)
mask_cropped = mask[min[1]:max[1],min[0]:max[0]]
roi = cv2.bitwise_or(frame_cropped,mask_cropped)
#roi = frame[roi_list_here[0][1]:roi_list_here[1][1],roi_list_here[0][0]:roi_list_here[1][0]]
number = []
results = model.predict(roi)
for r in results:
boxes = r.boxes
counter = 0
for box in boxes:
counter += 1
name = classes[box.cls.numpy()[0]]
conf = str(round(box.conf.numpy()[0],2))
text = name+""+conf
bbox = box.xyxy[0].numpy()
cv2.rectangle(frame,(int(bbox[0])+min[0],int(bbox[1])+min[1]),(int(bbox[2])+min[0],int(bbox[3])+min[1]),(0,255,0),2)
cv2.putText(frame,text,(int(bbox[0])+min[0],int(bbox[1])+min[1]-5),cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,255),2)
number.append(counter)
avg = sum(number)/len(number)
stats = str(round(avg,2))
if count%10 == 0:
st.session_state["data1"][f"ROI{k}"].append(avg)
k+=1
cv2.putText(frame,stats,(min[0],min[1]),cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,0),4)
cv2.polylines(frame,roi_corners,True,(255,0,0),2)
cv2.putText(frame,'The average number of vehicles in the Regions of Interest',(100,100),cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,255),4)
frame_placeholder.image(frame,channels='BGR')
cap.release()
st.write("The resultant data is:")
st.write(st.session_state.data1)
else:
st.error('PLEASE UPLOAD AN IMAGE OF THE FORMAT JPG,JPEG OR PNG', icon="🚨")
elif page == "PS3":
uploaded_file1 = st.file_uploader("Choose a video...", type=["mp4", "mpeg"])
model1 = YOLO("yolov8n.pt")
model2 = YOLO("best.pt")
if uploaded_file1 is not None:
with tempfile.NamedTemporaryFile(delete=False) as temp:
temp.write(uploaded_file.read())
if 'roi_list2' not in st.session_state:
st.session_state['roi_list2'] = []
if "all_rois2" not in st.session_state:
st.session_state['all_rois2'] = []
classes = model1.names
done_2 = st.button('Selection Done')
while len(st.session_state["all_rois2"]) < st.session_state['n']:
cap = cv2.VideoCapture(temp.name)
while not done_2:
ret,frame=cap.read()
cv2.putText(frame,'SELECT ROI',(100,100),cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,255),4)
if not ret:
st.write('ROI selection has concluded')
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
value = streamlit_image_coordinates(frame,key='numpy',width=750)
st.session_state["roi_list2"].append([int(value['x']*2.5),int(value['y']*2.5)])
st.write(st.session_state["roi_list2"])
if cv2.waitKey(0)&0xFF==27:
break
cap.release()
st.session_state["all_rois2"].append(st.session_state["roi_list2"])
st.session_state["roi_list2"] = []
done_2 = False
st.write('ROI indices: ',st.session_state["all_rois2"][0])
cap = cv2.VideoCapture(temp.name)
st.write("Detection started")
avg_list = []
count = 0
frame_placeholder = st.empty()
st.session_state.data = {}
for i in range(len(st.session_state["all_rois2"])):
st.session_state["data"][f"ROI{i}"] = []
for i in range(len(st.session_state['all_rois2'])):
st.session_state.data[f"ROI{i}"] = []
while cap.isOpened():
ret,frame=cap.read()
if not ret:
break
count += 1
if count % 3 != 0:
continue
# rois = []
k = 0
for roi_list_here1 in st.session_state["all_rois2"]:
max = [0,0]
min = [10000,10000]
roi_list_here = roi_list_here1[1:]
for i in range(len(roi_list_here)-1):
if roi_list_here[i][0] > max[0]:
max[0] = roi_list_here[i][0]
if roi_list_here[i][1] > max[1]:
max[1] = roi_list_here[i][1]
if roi_list_here[i][0] < min[0]:
min[0] = roi_list_here[i][0]
if roi_list_here[i][1] < min[1]:
min[1] = roi_list_here[i][1]
frame_cropped = frame[min[1]:max[1],min[0]:max[0]]
roi_corners = np.array([roi_list_here],dtype=np.int32)
mask = np.zeros(frame.shape,dtype=np.uint8)
mask.fill(255)
channel_count = frame.shape[2]
ignore_mask_color = (255,)*channel_count
cv2.fillPoly(mask,roi_corners,0)
mask_cropped = mask[min[1]:max[1],min[0]:max[0]]
roi = cv2.bitwise_or(frame_cropped,mask_cropped)
#roi = frame[roi_list_here[0][1]:roi_list_here[1][1],roi_list_here[0][0]:roi_list_here[1][0]]
number = []
results = model1.predict(roi)
results_pothole = model2.predict(source=frame)
for r in results:
boxes = r.boxes
counter = 0
for box in boxes:
counter += 1
name = classes[box.cls.numpy()[0]]
conf = str(round(box.conf.numpy()[0],2))
text = name+conf
bbox = box.xyxy[0].numpy()
cv2.rectangle(frame,(int(bbox[0])+min[0],int(bbox[1])+min[1]),(int(bbox[2])+min[0],int(bbox[3])+min[1]),(0,255,0),2)
cv2.putText(frame,text,(int(bbox[0])+min[0],int(bbox[1])+min[1]-5),cv2.FONT_HERSHEY_SIMPLEX, 0.4,(0,0,255),2)
number.append(counter)
for r in results_pothole:
masks = r.masks
boxes = r.boxes.cpu().numpy()
xyxys = boxes.xyxy
confs = boxes.conf
if masks is not None:
shapes = np.ones_like(frame)
for mask,conf,xyxy in zip(masks,confs,xyxys):
polygon = mask.xy[0]
if conf >= 0.49 and len(polygon)>=3:
cv2.fillPoly(shapes,pts=np.int32([polygon]),color=(0,0,255,0.5))
frame = cv2.addWeighted(frame,0.7,shapes,0.3,gamma=0)
cv2.rectangle(frame,(int(xyxy[0]),int(xyxy[1])),(int(xyxy[2]),int(xyxy[3])),(0,0,255),2)
cv2.putText(frame,'Pothole '+str(conf),(int(xyxy[0]),int(xyxy[1])-5),cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,255),2)
avg = sum(number)/len(number)
stats = str(round(avg,2))
if count % 10 == 0:
st.session_state.data[f"ROI{k}"].append(avg)
k+=1
cv2.putText(frame,stats,(min[0],min[1]),cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,0),4)
cv2.polylines(frame,roi_corners,True,(255,0,0),2)
if counter >= 5:
cv2.putText(frame,'!!CONGESTION MORE THAN '+str(counter)+' Objects',(min[0]+20,min[1]+20),cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,0),4)
cv2.polylines(frame,roi_corners,True,(255,0,0),2)
cv2.putText(frame,'Objects in the Regions of Interest',(100,100),cv2.FONT_HERSHEY_SIMPLEX, 1,(0,0,255),4)
frame_placeholder.image(frame,channels='BGR')
cap.release()
st.write("The result is:")
st.write(st.session.data)
else:
st.error('PLEASE UPLOAD AN IMAGE OF THE FORMAT JPG,JPEG OR PNG', icon="🚨")
elif page == "PS2":
st.header("CLICK ON RUN SCRIPT TO START A TRAFFIC SIMULATION")
script = st.button("RUN SCRIPT")
st.session_state.con = -1
if script:
st.session_state.con += 1
import gymnasium as gym
import sumo_rl
import os
from stable_baselines3 import DQN
from stable_baselines3.common.vec_env import DummyVecEnv
from stable_baselines3.common.evaluation import evaluate_policy
from sumo_rl import SumoEnvironment
env = gym.make('sumo-rl-v0',
net_file='single-intersection.net.xml',
route_file='single-intersection-gen.rou.xml',
out_csv_name='output',
use_gui=True,
single_agent=True,
num_seconds=5000)
model1 = DQN.load('DQN_MODEL3.zip',env=env)
st.write("The Simulation is currently running for 5000 steps, Results will be shown shortly.....")
one,two = evaluate_policy(model1,env = env,n_eval_episodes=5,render=True)
st.write("Evaluation Results: \nPer Episode Rewards(Higher the better):",one,"\nPer-episode lengths (in number of steps):",two)
import matplotlib.pyplot as plt
def eval_plot(path,metric,path_compare = None):
data = pd.read_csv(path)
if path_compare is not None:
data1 = pd.read_csv(path_compare)
x = []
for i in range(0,len(data)):
x.append(i)
y = data[metric]
y_1 = pd.to_numeric(y)
y_arr = np.array(y_1)
if path_compare is not None:
y2 = data1[metric]
y_2 = pd.to_numeric(y2)
y_arr2 = np.array(y_2)
x_arr = np.array(x)
fig = plt.figure()
ax1 = fig.add_subplot(2, 1, 1)
ax1.set_title(metric)
if path_compare is not None:
ax2 = fig.add_subplot(2, 1, 2,sharey=ax1)
ax2.set_title('compare '+metric)
ax1.plot(x_arr,y_arr)
if path_compare is not None:
ax2.plot(x_arr,y_arr2)
return fig
for i in range(1,2):
st.pyplot(eval_plot(f'output_conn{st.session_state.con}_ep{i}.csv','system_mean_waiting_time'))
st.pyplot(eval_plot(f'output_conn{st.session_state.con}_ep{i}.csv','agents_total_accumulated_waiting_time'))
elif page == "Chat with Results":
st.title('Chat with the Results')
st.write("Please upload the relevant CSV data to get started")
reload = st.button('Reload')
if 'isran' not in st.session_state or reload == True:
st.session_state['isran'] = False
uploaded_file = st.file_uploader('Choose your .csv file', type=["csv"])
if uploaded_file is not None and st.session_state['isran'] == False:
with open("temp.csv", "wb") as f:
f.write(uploaded_file.getvalue())
loader = CSVLoader('temp.csv')
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1000, chunk_overlap = 200)
splits = text_splitter.split_documents(docs)
embeddings = OllamaEmbeddings(model='mistral')
st.session_state.vectorstore = Chroma.from_documents(documents=splits,embedding=embeddings)
st.session_state['isran'] = True
if st.session_state['isran'] == True:
st.write("Embedding created")
def fdocs(docs):
return "\n\n".join(doc.page_content for doc in docs)
def llm(question,context):
formatted_prompt = f"Question: {question}\n\nContext:{context}"
response = ollama.chat(model='mistral', messages=[
{
'role': 'user',
'content': formatted_prompt
},
])
return response['message']['content']
def rag_chain(question):
retriever = st.session_state.vectorstore.as_retriever()
retrieved_docs = retriever.invoke(question)
formatted_context = fdocs(retrieved_docs)
return llm(question,formatted_context)
if 'messages' not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
st.chat_message(message['role']).markdown(message['content'])
prompt = st.chat_input("Say something")
response = rag_chain(prompt)
if prompt:
st.chat_message('user').markdown(prompt)
st.session_state.messages.append({'role':'user','content':prompt})
st.session_state.messages.append({'role':'AI','content':response})
st.chat_message('AI').markdown(response)
|