File size: 8,745 Bytes
21c7197
 
 
 
 
7b32412
21c7197
a13c444
21c7197
 
 
 
7b32412
21c7197
 
 
 
 
 
 
 
 
 
 
 
 
 
7b32412
21c7197
 
 
 
 
 
 
 
 
 
 
 
 
 
7b32412
21c7197
 
 
 
 
 
 
 
 
 
 
1974e22
21c7197
 
7b32412
2a040cc
21c7197
3cf0931
 
21c7197
 
 
 
 
3cf0931
21c7197
 
 
3cf0931
21c7197
 
2a040cc
21c7197
 
 
 
 
 
 
 
 
 
 
 
 
 
d9d229c
21c7197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1974e22
 
21c7197
 
 
 
 
 
1974e22
 
 
 
 
 
3cf0931
 
 
1974e22
 
 
3cf0931
 
 
 
 
21c7197
 
 
 
 
4bee342
21c7197
 
 
 
 
4bee342
21c7197
 
7b32412
21c7197
4bee342
21c7197
 
4bee342
7b32412
3cf0931
 
21c7197
 
4bee342
 
7b32412
21c7197
4bee342
7b32412
21c7197
4bee342
7b32412
21c7197
4bee342
21c7197
 
 
 
 
 
 
 
3cf0931
21c7197
d9d229c
21c7197
3cf0931
21c7197
 
 
4bee342
3cf0931
21c7197
d9d229c
21c7197
3cf0931
21c7197
 
4bee342
3cf0931
 
 
 
 
21c7197
d9d229c
21c7197
4bee342
3cf0931
 
 
 
 
 
 
 
d9d229c
3cf0931
21c7197
2a040cc
 
02841d1
 
 
 
3cf0931
21c7197
1974e22
21c7197
 
2a040cc
 
 
 
 
21c7197
2a040cc
 
 
 
 
 
 
21c7197
2a040cc
21c7197
 
 
 
 
 
 
 
 
3cf0931
21c7197
 
3cf0931
21c7197
 
3cf0931
21c7197
3cf0931
21c7197
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
"Filter definitions, with pre-processing, post-processing and compilation methods."

import numpy as np
import torch
from torch import nn
from common import AVAILABLE_FILTERS, INPUT_SHAPE

from concrete.fhe.compilation.compiler import Compiler
from concrete.ml.common.utils import generate_proxy_function
from concrete.ml.torch.numpy_module import NumpyModule


class TorchIdentity(nn.Module):
    """Torch identity model."""

    def forward(self, x):
        """Identity forward pass.

        Args:
            x (torch.Tensor): The input image.

        Returns:
            x (torch.Tensor): The input image.
        """
        return x


class TorchInverted(nn.Module):
    """Torch inverted model."""

    def forward(self, x):
        """Forward pass for inverting an image's colors.

        Args:
            x (torch.Tensor): The input image.

        Returns:
            torch.Tensor: The (color) inverted image.
        """
        return 255 - x


class TorchRotate(nn.Module):
    """Torch rotated model."""

    def forward(self, x):
        """Forward pass for rotating an image.

        Args:
            x (torch.Tensor): The input image.

        Returns:
            torch.Tensor: The rotated image.
        """
        return x.transpose(0, 1)


class TorchConv(nn.Module):
    """Torch model with a single convolution operator."""

    def __init__(self, kernel, n_in_channels=3, n_out_channels=3, groups=1, threshold=None):
        """Initialize the filter.

        Args:
            kernel (np.ndarray): The convolution kernel to consider.
        """
        super().__init__()
        self.kernel = torch.tensor(kernel, dtype=torch.int64)
        self.n_out_channels = n_out_channels
        self.n_in_channels = n_in_channels
        self.groups = groups
        self.threshold = threshold

    def forward(self, x):
        """Forward pass with a single convolution using a 1D or 2D kernel.

        Args:
            x (torch.Tensor): The input image.

        Returns:
            torch.Tensor: The filtered image.
        """
        # Define the convolution parameters
        stride = 1
        kernel_shape = self.kernel.shape

        # Ensure the kernel has a proper shape
        # If the kernel has a 1D shape, a (1, 1) kernel is used for each in_channels
        if len(kernel_shape) == 1:
            self.kernel = self.kernel.repeat(self.n_out_channels)
            kernel = self.kernel.reshape(
                self.n_out_channels,
                self.n_in_channels // self.groups,
                1,
                1,
            )

        # Else, if the kernel has a 2D shape, a single (Kw, Kh) kernel is used on all in_channels
        elif len(kernel_shape) == 2:
            kernel = self.kernel.expand(
                self.n_out_channels,
                self.n_in_channels // self.groups,
                kernel_shape[0],
                kernel_shape[1],
            )


        else:
            raise ValueError(
                "Wrong kernel shape, only 1D or 2D kernels are accepted. Got kernel of shape "
                f"{kernel_shape}"
            )

        # Reshape the image. This is done because Torch convolutions and Numpy arrays (for PIL 
        # display) don't follow the same shape conventions. More precisely, x is of shape 
        # (Width, Height, Channels) while the conv2d operator requires an input of shape 
        # (Batch, Channels, Height, Width)
        x = x.transpose(2, 0).unsqueeze(axis=0)

        # Apply the convolution
        x = nn.functional.conv2d(x, kernel, stride=stride, groups=self.groups)

        # Reshape the output back to the original shape (Width, Height, Channels)
        x = x.transpose(1, 3).reshape((x.shape[2], x.shape[3], self.n_out_channels))

        # Subtract a given threshold if given
        if self.threshold is not None:
            x -= self.threshold

        return x


class Filter:
    """Filter class used in the app."""

    def __init__(self, filter_name):
        """Initializing the filter class using a given filter.

        Most filters can be found at https://en.wikipedia.org/wiki/Kernel_(image_processing).

        Args:
            filter_name (str): The filter to consider.
        """

        assert filter_name in AVAILABLE_FILTERS, (
            f"Unsupported image filter or transformation. Expected one of {*AVAILABLE_FILTERS,}, "
            f"but got {filter_name}",
        )

        # Define attributes associated to the filter 
        self.filter_name = filter_name
        self.onnx_model = None
        self.fhe_circuit = None
        self.divide = None

        # Instantiate the torch module associated to the given filter name 
        if filter_name == "identity":
            self.torch_model = TorchIdentity()

        elif filter_name == "inverted":
            self.torch_model = TorchInverted()

        elif filter_name == "rotate":
            self.torch_model = TorchRotate()

        elif filter_name == "black and white":
            # Define the grayscale weights (RGB order)
            # These weights were used in PAL and NTSC video systems and can be found at
            # https://en.wikipedia.org/wiki/Grayscale
            # There are initially supposed to be float weights (0.299, 0.587, 0.114), with
            # 0.299 + 0.587 + 0.114 = 1
            # However, since FHE computations require weights to be integers, we first multiply
            # these by a factor of 1000. The output image's values are then divided by 1000 in
            # post-processing in order to retrieve the correct result
            kernel = [299, 587, 114]

            self.torch_model = TorchConv(kernel)

            # Define the value used when for dividing the output values in post-processing
            self.divide = 1000


        elif filter_name == "blur":
            kernel = np.ones((3, 3))

            self.torch_model = TorchConv(kernel, groups=3)

            # Define the value used when for dividing the output values in post-processing
            self.divide = 9

        elif filter_name == "sharpen":
            kernel = [
                [0, -1, 0],
                [-1, 5, -1],
                [0, -1, 0],
            ]

            self.torch_model = TorchConv(kernel, groups=3)

        elif filter_name == "ridge detection":
            kernel = [
                [-1, -1, -1],
                [-1, 9, -1],
                [-1, -1, -1],
            ]

            # Additionally to the convolution operator, the filter will subtract a given threshold
            # value to the result in order to better display the ridges
            self.torch_model = TorchConv(kernel, threshold=900)


    def compile(self):
        """Compile the filter on a representative inputset."""
        # Generate a random representative set of images used for compilation, following shape 
        # PIL's shape RGB format for Numpy arrays (image_width, image_height, 3)
        # Additionally, this version's compiler only handles tuples of 1-batch array as inputset, 
        # meaning we need to define the inputset as a Tuple[np.ndarray[shape=(H, W, 3)]]  
        np.random.seed(42)
        inputset = tuple(
            np.random.randint(0, 256, size=(INPUT_SHAPE + (3, )), dtype=np.int64) for _ in range(100)
        )

        # Convert the Torch module to a Numpy module
        numpy_module = NumpyModule(
            self.torch_model,
            dummy_input=torch.from_numpy(inputset[0]),
        )

        # Get the proxy function and parameter mappings used for initializing the compiler
        # This is done in order to be able to provide any modules with arbitrary numbers of 
        # encrypted arguments to Concrete Numpy's compiler
        numpy_filter_proxy, parameters_mapping = generate_proxy_function(
            numpy_module.numpy_forward, 
            ["inputs"]
        )

        # Compile the filter and retrieve its FHE circuit
        compiler = Compiler(
            numpy_filter_proxy,
            {parameters_mapping["inputs"]: "encrypted"},
        )
        self.fhe_circuit = compiler.compile(inputset)

        return self.fhe_circuit

    def post_processing(self, output_image):
        """Apply post-processing to the encrypted output images.

        Args:
            input_image (np.ndarray): The decrypted image to post-process.

        Returns:
            input_image (np.ndarray): The post-processed image.
        """
        # Divide all values if needed
        if self.divide is not None:
            output_image //= self.divide

        # Clip the image's values to proper RGB standards as filters don't handle such constraints
        output_image = output_image.clip(0, 255)

        return output_image