File size: 9,358 Bytes
81d65e8
b327b2e
81d65e8
 
 
 
 
 
a0d66c9
39f9011
81d65e8
 
 
 
 
 
88b1e11
81d65e8
 
 
038148f
 
81d65e8
 
 
 
 
 
be38ebe
 
 
 
 
 
 
 
 
81d65e8
 
32c181d
 
74f30e9
b327b2e
be38ebe
b327b2e
74f30e9
81d65e8
 
 
88b1e11
81d65e8
 
 
 
6e289c3
81d65e8
038148f
 
81d65e8
88b1e11
 
81d65e8
 
 
dc155bd
 
272dccb
 
bcaf9e5
81d65e8
cad1c1a
 
4badf9e
 
 
 
 
 
 
 
 
646c2a1
4badf9e
 
 
 
 
 
cad1c1a
81d65e8
 
 
 
 
 
 
 
 
88b1e11
 
81d65e8
 
f81af70
88b1e11
81d65e8
 
be38ebe
 
81d65e8
be38ebe
ea72b2a
be38ebe
81d65e8
4f5263b
038148f
 
 
 
 
4f5263b
 
 
038148f
 
4f5263b
038148f
 
4f5263b
be38ebe
 
 
 
 
 
 
81d65e8
 
88b1e11
81d65e8
 
 
c96b784
81d65e8
cad1c1a
 
 
 
e405bdb
cad1c1a
4badf9e
81d65e8
038148f
81d65e8
 
 
 
 
0db653d
038148f
 
 
 
 
 
81d65e8
 
 
 
 
 
 
 
 
 
 
 
3b6fc32
81d65e8
3b6fc32
88b1e11
81d65e8
 
 
 
 
74f30e9
81d65e8
 
 
 
 
7659e10
 
 
 
 
 
 
0db653d
f36b34e
f0828ea
f36b34e
7659e10
9c05832
0e1ad86
 
 
 
2bfa4fe
 
 
bcaf9e5
 
 
 
 
71fd45b
 
 
ada6a7b
 
9c05832
601bf30
be38ebe
601bf30
4badf9e
 
 
 
 
 
 
cad1c1a
 
4badf9e
a0d66c9
038148f
 
9f8e539
038148f
4badf9e
96f4bcd
038148f
 
 
 
 
 
96f4bcd
 
 
 
9f8e539
f0828ea
96f4bcd
 
81d65e8
 
 
 
 
 
0508364
81d65e8
88b1e11
9c05832
88b1e11
81d65e8
4badf9e
cfc1783
7659e10
7546941
 
7659e10
81d65e8
 
88b1e11
 
 
038148f
 
88b1e11
 
bcaf9e5
81d65e8
 
4badf9e
 
 
646c2a1
4badf9e
81d65e8
 
88b1e11
81d65e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import argparse
import pprint as pp
import logging
import time
import gradio as gr
import torch
from transformers import pipeline

from utils import make_mailto_form, postprocess, clear, make_email_link

logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)

use_gpu = torch.cuda.is_available()


def generate_text(
    prompt: str,
    gen_length=64,
    penalty_alpha=0.6,
    top_k=6,
    length_penalty=1.0,
    # perma params (not set by user)
    abs_max_length=512,
    verbose=False,
):
    """
    generate_text - generate text using the text generation pipeline

    :param str prompt: the prompt to use for the text generation pipeline
    :param int gen_length: the number of tokens to generate
    :param float penalty_alpha: the penalty alpha for the text generation pipeline (contrastive search)
    :param int top_k: the top k for the text generation pipeline (contrastive search)
    :param int abs_max_length: the absolute max length for the text generation pipeline
    :param bool verbose: verbose output
    :return str: the generated text
    """
    global generator
    if verbose:
        logging.info(f"Generating text from prompt:\n\n{prompt}")
        logging.info(
            pp.pformat(
                f"params:\tmax_length={gen_length}, penalty_alpha={penalty_alpha}, top_k={top_k}, length_penalty={length_penalty}"
            )
        )
    st = time.perf_counter()

    input_tokens = generator.tokenizer(prompt)
    input_len = len(input_tokens["input_ids"])
    if input_len > abs_max_length:
        logging.info(f"Input too long {input_len} > {abs_max_length}, may cause errors")
    result = generator(
        prompt,
        max_length=gen_length + input_len, # old API for generation
        min_length=input_len + 4,
        penalty_alpha=penalty_alpha,
        top_k=top_k,
        length_penalty=length_penalty,
    )  # generate
    response = result[0]["generated_text"]
    rt = time.perf_counter() - st
    if verbose:
        logging.info(f"Generated text: {response}")
    rt_string = f"Generation time: {rt:.2f}s"
    logging.info(rt_string)

    formatted_email = postprocess(response)
    return make_mailto_form(body=formatted_email), formatted_email


def load_emailgen_model(model_tag: str):
    """
    load_emailgen_model - load a text generation pipeline for email generation

    Args:
        model_tag (str): the huggingface model tag to load

    Returns:
        transformers.pipelines.TextGenerationPipeline: the text generation pipeline
    """
    global generator
    generator = pipeline(
        "text-generation",
        model_tag,
        device=0 if use_gpu else -1,
    )


def get_parser():
    """
    get_parser - a helper function for the argparse module
    """
    parser = argparse.ArgumentParser(
        description="Text Generation demo for postbot",
    )

    parser.add_argument(
        "-m",
        "--model",
        required=False,
        type=str,
        default="postbot/distilgpt2-emailgen-V2",
        help="Pass an different huggingface model tag to use a custom model",
    )
    parser.add_argument(
        "-l",
        "--max_length",
        required=False,
        type=int,
        default=40,
        help="default max length of the generated text",
    )
    parser.add_argument(
        "-a",
        "--penalty_alpha",
        type=float,
        default=0.6,
        help="The penalty alpha for the text generation pipeline (contrastive search) - default 0.6",
    )

    parser.add_argument(
        "-k",
        "--top_k",
        type=int,
        default=6,
        help="The top k for the text generation pipeline (contrastive search) - default 6",
    )
    parser.add_argument(
        "-v",
        "--verbose",
        required=False,
        action="store_true",
        help="Verbose output",
    )
    return parser


default_prompt = """
Hello,

Following up on last week's bubblegum shipment, I"""

available_models = [
    "postbot/distilgpt2-emailgen-V2",
    "postbot/distilgpt2-emailgen",
    "postbot/gpt2-medium-emailgen",
    "postbot/pythia-160m-hq-emails",
]

if __name__ == "__main__":

    logging.info("\n\n\nStarting new instance of app.py")
    args = get_parser().parse_args()
    logging.info(f"received args:\t{args}")
    model_tag = args.model
    verbose = args.verbose
    max_length = args.max_length
    top_k = args.top_k
    alpha = args.penalty_alpha

    assert top_k > 0, "top_k must be greater than 0"
    assert alpha >= 0.0 and alpha <= 1.0, "penalty_alpha must be between 0 and 1"

    logging.info(f"Loading model: {model_tag}, use GPU = {use_gpu}")
    generator = pipeline(
        "text-generation",
        model_tag,
        device=0 if use_gpu else -1,
    )

    demo = gr.Blocks()

    logging.info("launching interface...")

    with demo:
        gr.Markdown("# Auto-Complete Emails - Demo")
        gr.Markdown(
            "Enter part of an email, and a text-gen model will complete it! See details below. "
        )
        gr.Markdown("---")

        with gr.Column():

            gr.Markdown("## Generate Text")
            gr.Markdown("Edit the prompt and parameters and press **Generate**!")
            prompt_text = gr.Textbox(
                lines=4,
                label="Email Prompt",
                value=default_prompt,
            )

            with gr.Row():
                clear_button = gr.Button(
                    value="Clear Prompt",
                )
                num_gen_tokens = gr.Slider(
                    label="Generation Tokens",
                    value=max_length,
                    maximum=96,
                    minimum=16,
                    step=8,
                )

            generate_button = gr.Button(
                value="Generate!",
                variant="primary",
            )
            gr.Markdown("---")
            gr.Markdown("### Results")
            # put a large HTML placeholder here
            generated_email = gr.Textbox(
                label="Generated Text",
                placeholder="This is where the generated text will appear",
                interactive=False,
            )
            email_mailto_button = gr.HTML(
                "<i>a clickable email button will appear here</i>"
            )

            gr.Markdown("---")
            gr.Markdown("## Advanced Options")
            gr.Markdown(
                "This demo generates text via the new [contrastive search](https://huggingface.co/blog/introducing-csearch). See the csearch blog post for details on the parameters or [here](https://huggingface.co/blog/how-to-generate), for general decoding."
            )
            with gr.Row():
                model_name = gr.Dropdown(
                    choices=available_models,
                    label="Choose a model",
                    value=model_tag,
                )
                load_model_button = gr.Button(
                    "Load Model",
                    variant="secondary",
                )
            with gr.Row():
                contrastive_top_k = gr.Radio(
                    choices=[2, 4, 6, 8],
                    label="Top K",
                    value=top_k,
                )

                penalty_alpha = gr.Slider(
                    label="Penalty Alpha",
                    value=alpha,
                    maximum=1.0,
                    minimum=0.0,
                    step=0.1,
                )
                length_penalty = gr.Slider(
                    minimum=0.5,
                    maximum=1.0,
                    label="Length Penalty",
                    value=1.0,
                    step=0.1,
                )
            gr.Markdown("---")

        with gr.Column():

            gr.Markdown("## About")
            gr.Markdown(
                "[This model](https://huggingface.co/postbot/distilgpt2-emailgen) is a fine-tuned version of distilgpt2 on a dataset of 100k emails sourced from the internet, including the classic `aeslc` dataset.\n\nCheck out the model card for details on notebook & command line usage."
            )
            gr.Markdown(
                "The intended use of this model is to provide suggestions to _auto-complete_ the rest of your email. Said another way, it should serve as a **tool to write predictable emails faster**. It is not intended to write entire emails from scratch; at least **some input** is required to guide the direction of the model.\n\nPlease verify any suggestions by the model for A) False claims and B) negation statements **before** accepting/sending something."
            )
            gr.Markdown("---")

        clear_button.click(
            fn=clear,
            inputs=[prompt_text],
            outputs=[prompt_text],
        )
        generate_button.click(
            fn=generate_text,
            inputs=[
                prompt_text,
                num_gen_tokens,
                penalty_alpha,
                contrastive_top_k,
                length_penalty,
            ],
            outputs=[email_mailto_button, generated_email],
        )

        load_model_button.click(
            fn=load_emailgen_model,
            inputs=[model_name],
            outputs=[],
        )
    demo.launch(
        enable_queue=True,
        share=True,  # for local testing
    )