File size: 7,887 Bytes
21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 e81fcbb 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 caf45b8 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 98b733b 0228739 98b733b 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff 10f9258 21891ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import gradio as gr
import pandas as pd
import plotly.express as px
import requests
import re
import os
import glob
# Download the main results file
def download_main_results():
url = "https://github.com/huggingface/pytorch-image-models/raw/main/results/results-imagenet.csv"
if not os.path.exists("results-imagenet.csv"):
response = requests.get(url)
with open("results-imagenet.csv", "wb") as f:
f.write(response.content)
def download_github_csvs_api(
repo="huggingface/pytorch-image-models",
folder="results",
filename_pattern=r"benchmark-.*\.csv",
output_dir="benchmarks",
):
"""Download benchmark CSV files from GitHub API."""
api_url = f"https://api.github.com/repos/{repo}/contents/{folder}"
r = requests.get(api_url)
if r.status_code != 200:
return []
files = r.json()
matched_files = [f["name"] for f in files if re.match(filename_pattern, f["name"])]
if not matched_files:
return []
raw_base = f"https://raw.githubusercontent.com/{repo}/main/{folder}/"
os.makedirs(output_dir, exist_ok=True)
for fname in matched_files:
raw_url = raw_base + fname
out_path = os.path.join(output_dir, fname)
if not os.path.exists(out_path): # Only download if not exists
resp = requests.get(raw_url)
if resp.ok:
with open(out_path, "wb") as f:
f.write(resp.content)
return matched_files
def load_main_data():
"""Load the main ImageNet results."""
download_main_results()
df_results = pd.read_csv("results-imagenet.csv")
df_results["model_org"] = df_results["model"]
df_results["model"] = df_results["model"].str.split(".").str[0]
return df_results
def get_data(benchmark_file, df_results):
"""Process benchmark data and merge with main results."""
pattern = (
r"^(?:"
r"eva|"
r"maxx?vit(?:v2)?|"
r"coatnet|coatnext|"
r"convnext(?:v2)?|"
r"beit(?:v2)?|"
r"efficient(?:net(?:v2)?|former(?:v2)?|vit)|"
r"regnet[xyvz]?|"
r"levit|"
r"mobilenet(?:v\d*)?|"
r"vitd?|"
r"swin(?:v2)?"
r")$"
)
if not os.path.exists(benchmark_file):
return pd.DataFrame()
df = pd.read_csv(benchmark_file).merge(df_results, on="model")
df["secs"] = 1.0 / df["infer_samples_per_sec"]
df["family"] = df.model.str.extract("^([a-z]+?(?:v2)?)(?:\d|_|$)")
df = df[~df.model.str.endswith("gn")]
df.loc[df.model.str.contains("resnet.*d"), "family"] = (
df.loc[df.model.str.contains("resnet.*d"), "family"] + "d"
)
return df[df.family.str.contains(pattern)]
def create_plot(benchmark_file, x_axis, y_axis, selected_families, log_x, log_y):
"""Create the scatter plot based on user selections."""
df_results = load_main_data()
df = get_data(benchmark_file, df_results)
if df.empty:
return None
# Filter by selected families
if selected_families:
df = df[df["family"].isin(selected_families)]
if df.empty:
return None
# Create the plot
fig = px.scatter(
df,
width=1000,
height=800,
x=x_axis,
y=y_axis,
size=df['infer_img_size']**2,
log_x=log_x,
log_y=log_y,
color="family",
hover_name="model_org",
hover_data=["infer_samples_per_sec", "infer_img_size"],
title=f"Model Performance: {y_axis} vs {x_axis}",
)
return fig
def setup_interface():
"""Set up the Gradio interface."""
# Download benchmark files
downloaded_files = download_github_csvs_api()
# Get available benchmark files
benchmark_files = glob.glob("benchmarks/benchmark-*.csv")
if not benchmark_files:
benchmark_files = ["No benchmark files found"]
# Load sample data to get families and columns
df_results = load_main_data()
# Relevant columns for plotting
plot_columns = [
"top1",
"top5",
"infer_samples_per_sec",
"secs",
"param_count_x",
"infer_img_size",
]
# Get families from a sample file (if available)
families = []
if benchmark_files and benchmark_files[0] != "No benchmark files found":
sample_df = get_data(benchmark_files[0], df_results)
if not sample_df.empty:
families = sorted(sample_df["family"].unique().tolist())
return benchmark_files, plot_columns, families
# Initialize the interface
benchmark_files, plot_columns, families = setup_interface()
# Create the Gradio interface
with gr.Blocks(title="Image Model Performance Analysis") as demo:
gr.Markdown("# Image Model Performance Analysis")
gr.Markdown(
"Analyze and visualize performance metrics of different image models based on benchmark data."
)
with gr.Row():
with gr.Column(scale=1):
# Set preferred default file
preferred_file = (
"benchmarks/benchmark-infer-amp-nhwc-pt240-cu124-rtx3090.csv"
)
default_file = (
preferred_file
if preferred_file in benchmark_files
else (benchmark_files[0] if benchmark_files else None)
)
benchmark_dropdown = gr.Dropdown(
choices=benchmark_files,
value=default_file,
label="Select Benchmark File",
)
x_axis_radio = gr.Radio(choices=plot_columns, value="secs", label="X-axis")
y_axis_radio = gr.Radio(choices=plot_columns, value="top1", label="Y-axis")
family_checkboxes = gr.CheckboxGroup(
choices=families, value=families, label="Select Model Families"
)
log_x_checkbox = gr.Checkbox(value=True, label="Log scale X-axis")
log_y_checkbox = gr.Checkbox(value=False, label="Log scale Y-axis")
update_button = gr.Button("Update Plot", variant="primary")
with gr.Column(scale=2):
plot_output = gr.Plot()
gr.Markdown("The benchmark data comes from the [pytorch-image-models](https://github.com/huggingface/pytorch-image-models) repository by [Ross Wightman](https://huggingface.co/rwightman).")
gr.Markdown("Based on the original notebook by [Jeremy Howard](https://huggingface.co/jph00).")
gr.Markdown("Read more about the project on my blog [dronelab.dev](https://dronelab.dev/posts/which-image-models-are-best-updated/).")
# Update plot when button is clicked
update_button.click(
fn=create_plot,
inputs=[
benchmark_dropdown,
x_axis_radio,
y_axis_radio,
family_checkboxes,
log_x_checkbox,
log_y_checkbox,
],
outputs=plot_output,
)
# Auto-update when benchmark file changes
def update_families(benchmark_file):
if not benchmark_file or benchmark_file == "No benchmark files found":
return gr.CheckboxGroup(choices=[], value=[])
df_results = load_main_data()
df = get_data(benchmark_file, df_results)
if df.empty:
return gr.CheckboxGroup(choices=[], value=[])
new_families = sorted(df["family"].unique().tolist())
return gr.CheckboxGroup(choices=new_families, value=new_families)
benchmark_dropdown.change(
fn=update_families, inputs=benchmark_dropdown, outputs=family_checkboxes
)
# Load initial plot
demo.load(
fn=create_plot,
inputs=[
benchmark_dropdown,
x_axis_radio,
y_axis_radio,
family_checkboxes,
log_x_checkbox,
log_y_checkbox,
],
outputs=plot_output,
)
if __name__ == "__main__":
demo.launch()
|