Spaces:
Runtime error
Runtime error
File size: 13,500 Bytes
6c0da01 ebafcec 6c0da01 ebafcec 6c0da01 ebafcec 6c0da01 ebafcec 6c0da01 ebafcec 6c0da01 ebafcec 6c0da01 ebafcec 6c0da01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
#!/usr/bin/env python
# coding: utf-8
# # Importing the Required Libraries.
# In[1]:
import keras
get_ipython().run_line_magic('env', 'SM_FRAMEWORK=tf.keras')
import segmentation_models as sm
import glob
import matplotlib.pyplot as plt
from scipy import ndimage
from scipy.ndimage import label, generate_binary_structure
import radiomics
import cv2
import SimpleITK as sitk
import six
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
get_ipython().run_line_magic('matplotlib', 'inline')
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import mutual_info_classif
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import RFE
from sklearn.metrics import roc_auc_score
from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import Lasso, LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.svm import LinearSVC
from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectFromModel
from sklearn.feature_selection import mutual_info_classif as MIC
from sklearn.feature_selection import mutual_info_classif, mutual_info_regression
from sklearn.feature_selection import SelectKBest, SelectPercentile
from sklearn.feature_selection import SequentialFeatureSelector
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.metrics import f1_score
from sklearn.model_selection import cross_validate
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import Perceptron
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import GridSearchCV
import warnings
warnings.filterwarnings('ignore')
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
# # Defining the path to Model and Images
# In[2]:
IMAGE_SIZE = (256,256,3)
path_base_model = './/models//'
# # Loading the models
# In[4]:
BACKBONE = 'efficientnetb0'
model1 = sm.Unet(BACKBONE, input_shape = (IMAGE_SIZE[0],IMAGE_SIZE[1],IMAGE_SIZE[2]),classes=1, activation='sigmoid',encoder_weights='imagenet')
model2 = sm.Unet(BACKBONE, input_shape = (IMAGE_SIZE[0],IMAGE_SIZE[1],IMAGE_SIZE[2]),classes=1, activation='sigmoid',encoder_weights='imagenet')
model3 = sm.Unet(BACKBONE, input_shape = (IMAGE_SIZE[0],IMAGE_SIZE[1],IMAGE_SIZE[2]),classes=1, activation='sigmoid',encoder_weights='imagenet')
BACKBONE = 'efficientnetb7'
model4 = sm.Unet(BACKBONE, input_shape = (IMAGE_SIZE[0],IMAGE_SIZE[1],IMAGE_SIZE[2]),classes=1, activation='sigmoid',encoder_weights='imagenet')
model5 = sm.Unet(BACKBONE, input_shape = (IMAGE_SIZE[0],IMAGE_SIZE[1],IMAGE_SIZE[2]),classes=1, activation='sigmoid',encoder_weights='imagenet')
preprocess_input = sm.get_preprocessing(BACKBONE)
model1.load_weights(path_base_model + 'model1.hdf5')
model2.load_weights(path_base_model + 'model2.hdf5')
model3.load_weights(path_base_model + 'model3.hdf5')
model4.load_weights(path_base_model + 'model4.hdf5')
model5.load_weights(path_base_model + 'model5.hdf5')
# # Defining Required Functions
# In[5]:
def preprocessing_HE(img_):
hist, bins = np.histogram(img_.flatten(), 256,[0,256])
cdf = hist.cumsum()
cdf_m = np.ma.masked_equal(cdf,0)
cdf_m = (cdf_m - cdf_m.min())*255/(cdf_m.max()-cdf_m.min())
cdf = np.ma.filled(cdf_m,0).astype('uint8')
img_2 = cdf[img_]
return img_2
def get_binary_mask (mask_, th_ = 0.5):
mask_[mask_>th_] = 1
mask_[mask_<=th_] = 0
return mask_
def ensemble_results (mask1_, mask2_, mask3_, mask4_, mask5_):
mask1_ = get_binary_mask (mask1_)
mask2_ = get_binary_mask (mask2_)
mask3_ = get_binary_mask (mask3_)
mask4_ = get_binary_mask (mask4_)
mask5_ = get_binary_mask (mask5_)
ensemble_mask = mask1_ + mask2_ + mask3_ + mask4_ + mask5_
ensemble_mask[ensemble_mask<=2.0] = 0
ensemble_mask[ensemble_mask> 2.0] = 1
return ensemble_mask
def postprocessing_HoleFilling (mask_):
ensemble_mask_post_temp = ndimage.binary_fill_holes(mask_).astype(int)
return ensemble_mask_post_temp
def get_maximum_index (labeled_array):
ind_nums = []
for i in range (len(np.unique(labeled_array)) - 1):
ind_nums.append ([0, i+1])
for i in range (1, len(np.unique(labeled_array))):
ind_nums[i-1][0] = len(np.where (labeled_array == np.unique(labeled_array)[i])[0])
ind_nums = sorted(ind_nums)
return ind_nums[len(ind_nums)-1][1], ind_nums[len(ind_nums)-2][1]
def postprocessing_EliminatingIsolation (ensemble_mask_post_temp):
labeled_array, num_features = label(ensemble_mask_post_temp)
ind_max1, ind_max2 = get_maximum_index (labeled_array)
ensemble_mask_post_temp2 = np.zeros (ensemble_mask_post_temp.shape)
ensemble_mask_post_temp2[labeled_array == ind_max1] = 1
ensemble_mask_post_temp2[labeled_array == ind_max2] = 1
return ensemble_mask_post_temp2.astype(int)
def get_prediction(model_, img_org_):
img_org_resize = cv2.resize(img_org_,(IMAGE_SIZE[0],IMAGE_SIZE[1]),cv2.INTER_AREA)
img_org_resize_HE = preprocessing_HE (img_org_resize)
img_ready = preprocess_input (img_org_resize_HE)
img_ready = np.expand_dims(img_ready, axis=0)
pr_mask = model_.predict(img_ready)
pr_mask = np.squeeze(pr_mask)
pr_mask = np.expand_dims(pr_mask, axis=-1)
return pr_mask[:,:,0]
# ## Create and intantiate Feature Extractor and enable the required features
# In[9]:
extractor = radiomics.featureextractor.RadiomicsFeatureExtractor(force2D=True)
extractor.enableImageTypeByName('Original') # extract features from the original image
extractor.enableFeatureClassByName('firstorder') # extract first-order features
extractor.enableFeatureClassByName('glcm') # extract GLCM features
extractor.enableFeatureClassByName('gldm') # extract GLDM features
extractor.enableFeatureClassByName('glszm') # extract GLSZM features
extractor.enableFeatureClassByName('ngtdm') # extract NGTDM features
features_name = ['diagnostics_Versions_PyRadiomics',
'diagnostics_Versions_Numpy',
'diagnostics_Versions_SimpleITK',
'diagnostics_Versions_PyWavelet',
'diagnostics_Versions_Python',
'diagnostics_Configuration_Settings',
'diagnostics_Configuration_EnabledImageTypes',
'diagnostics_Image-original_Hash',
'diagnostics_Image-original_Dimensionality',
'diagnostics_Image-original_Spacing',
'diagnostics_Image-original_Size',
'diagnostics_Image-original_Mean',
'diagnostics_Image-original_Minimum',
'diagnostics_Image-original_Maximum',
'diagnostics_Mask-original_Hash',
'diagnostics_Mask-original_Spacing',
'diagnostics_Mask-original_Size',
'diagnostics_Mask-original_BoundingBox',
'diagnostics_Mask-original_VoxelNum',
'diagnostics_Mask-original_VolumeNum',
'diagnostics_Mask-original_CenterOfMassIndex',
'diagnostics_Mask-original_CenterOfMass',
'original_firstorder_10Percentile',
'original_firstorder_90Percentile',
'original_firstorder_Energy',
'original_firstorder_Entropy',
'original_firstorder_InterquartileRange',
'original_firstorder_Kurtosis',
'original_firstorder_Maximum',
'original_firstorder_MeanAbsoluteDeviation',
'original_firstorder_Mean',
'original_firstorder_Median',
'original_firstorder_Minimum',
'original_firstorder_Range',
'original_firstorder_RobustMeanAbsoluteDeviation',
'original_firstorder_RootMeanSquared',
'original_firstorder_Skewness',
'original_firstorder_TotalEnergy',
'original_firstorder_Uniformity',
'original_firstorder_Variance',
'original_glcm_Autocorrelation',
'original_glcm_ClusterProminence',
'original_glcm_ClusterShade',
'original_glcm_ClusterTendency',
'original_glcm_Contrast',
'original_glcm_Correlation',
'original_glcm_DifferenceAverage',
'original_glcm_DifferenceEntropy',
'original_glcm_DifferenceVariance',
'original_glcm_Id',
'original_glcm_Idm',
'original_glcm_Idmn',
'original_glcm_Idn',
'original_glcm_Imc1',
'original_glcm_Imc2',
'original_glcm_InverseVariance',
'original_glcm_JointAverage',
'original_glcm_JointEnergy',
'original_glcm_JointEntropy',
'original_glcm_MCC',
'original_glcm_MaximumProbability',
'original_glcm_SumAverage',
'original_glcm_SumEntropy',
'original_glcm_SumSquares',
'original_gldm_DependenceEntropy',
'original_gldm_DependenceNonUniformity',
'original_gldm_DependenceNonUniformityNormalized',
'original_gldm_DependenceVariance',
'original_gldm_GrayLevelNonUniformity',
'original_gldm_GrayLevelVariance',
'original_gldm_HighGrayLevelEmphasis',
'original_gldm_LargeDependenceEmphasis',
'original_gldm_LargeDependenceHighGrayLevelEmphasis',
'original_gldm_LargeDependenceLowGrayLevelEmphasis',
'original_gldm_LowGrayLevelEmphasis',
'original_gldm_SmallDependenceEmphasis',
'original_gldm_SmallDependenceHighGrayLevelEmphasis',
'original_gldm_SmallDependenceLowGrayLevelEmphasis',
'original_glrlm_GrayLevelNonUniformity',
'original_glrlm_GrayLevelNonUniformityNormalized',
'original_glrlm_GrayLevelVariance',
'original_glrlm_HighGrayLevelRunEmphasis',
'original_glrlm_LongRunEmphasis',
'original_glrlm_LongRunHighGrayLevelEmphasis',
'original_glrlm_LongRunLowGrayLevelEmphasis',
'original_glrlm_LowGrayLevelRunEmphasis',
'original_glrlm_RunEntropy',
'original_glrlm_RunLengthNonUniformity',
'original_glrlm_RunLengthNonUniformityNormalized',
'original_glrlm_RunPercentage',
'original_glrlm_RunVariance',
'original_glrlm_ShortRunEmphasis',
'original_glrlm_ShortRunHighGrayLevelEmphasis',
'original_glrlm_ShortRunLowGrayLevelEmphasis',
'original_glszm_GrayLevelNonUniformity',
'original_glszm_GrayLevelNonUniformityNormalized',
'original_glszm_GrayLevelVariance',
'original_glszm_HighGrayLevelZoneEmphasis',
'original_glszm_LargeAreaEmphasis',
'original_glszm_LargeAreaHighGrayLevelEmphasis',
'original_glszm_LargeAreaLowGrayLevelEmphasis',
'original_glszm_LowGrayLevelZoneEmphasis',
'original_glszm_SizeZoneNonUniformity',
'original_glszm_SizeZoneNonUniformityNormalized',
'original_glszm_SmallAreaEmphasis',
'original_glszm_SmallAreaHighGrayLevelEmphasis',
'original_glszm_SmallAreaLowGrayLevelEmphasis',
'original_glszm_ZoneEntropy',
'original_glszm_ZonePercentage',
'original_glszm_ZoneVariance',
'original_ngtdm_Busyness',
'original_ngtdm_Coarseness',
'original_ngtdm_Complexity',
'original_ngtdm_Contrast',
'original_ngtdm_Strength']
# In[12]:
df = pd.read_csv('final_dataset.csv')
df.shape
# In[13]:
X_train, X_test, y_train, y_test = train_test_split(
df.drop(labels=['Label'], axis=1),
df['Label'],
test_size=0.2,
random_state=23)
X_train.shape, X_test.shape
# In[14]:
from sklearn.preprocessing import StandardScaler
def scale_data(dataset):
scaler = StandardScaler()
scaled_data = scaler.fit_transform(dataset)
return scaled_data
# In[15]:
scaled_train_set = scale_data(X_train)
scaled_test_set = scale_data(X_test)
# In[16]:
RF = RandomForestClassifier(criterion = 'entropy',max_depth = None, max_features = 'log2', max_leaf_nodes = None,
min_samples_leaf = 1,min_samples_split = 4, min_weight_fraction_leaf = 0.0, n_estimators = 200)
RF.fit(X_train,y_train)
# In[17]:
import pickle
# create an iterator object with write permission - model.pkl
with open('model_pkl', 'wb') as files:
pickle.dump(RF, files)
# In[19]:
model = pickle.load(open('model_pkl', 'rb'))
model.score(X_test,y_test)
# In[23]:
# from sklearn.preprocessing import MinMaxScaler
# In[42]:
def pneumonia(image):
img_ = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
resized_img = cv2.resize(img_,(256,256))
original_image = 'original.jpeg'
cv2.imwrite(original_image,resized_img)
img = cv2.imread(original_image)
pr_mask1 = get_prediction (model1, img);
pr_mask2 = get_prediction (model2, img);
pr_mask3 = get_prediction (model3, img);
pr_mask4 = get_prediction (model4, img);
pr_mask5 = get_prediction (model5, img);
ensemble_mask = ensemble_results (pr_mask1, pr_mask2, pr_mask3, pr_mask4, pr_mask5)
ensemble_mask_post_HF = postprocessing_HoleFilling (ensemble_mask)
ensemble_mask_post_HF_EI = postprocessing_EliminatingIsolation (ensemble_mask_post_HF)
mask = 'mask.jpeg'
cv2.imwrite(mask,ensemble_mask_post_HF_EI*255)
features = {}
df = pd.DataFrame(columns=features_name)
image_ = sitk.ReadImage(original_image, sitk.sitkInt8)
mask = sitk.ReadImage(mask, sitk.sitkInt8)
features = extractor.execute(image_, mask)
df = df.append(features, ignore_index=True)
cols = df.columns[22:]
# Create new dataframe with selected columns
DataFrame = df[cols]
prediction = model.predict(DataFrame)
if prediction == 0: # Determine the predicted class
Label = "Normal"
elif prediction == 1:
Label = "Pneumonia"
return Label
# In[43]:
import gradio as gr
iface =gr.Interface(fn = pneumonia,
inputs = "image",
outputs = [gr.outputs.Textbox(label="Prediction")],
title = "Pnuemonia Detection from Chest X ray images",
description = "Upload a Chest X ray image")
iface.launch(share = True)
|