Spaces:
Runtime error
Runtime error
File size: 10,929 Bytes
00ac9b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
#standard imports
import pandas as pd
import numpy as np
import streamlit as st
import os
import glob
#imports for finding the nearest lat long using haversine distance
from math import radians, cos, sin, asin, sqrt
import math
#visualization libraries to visualize different plots
import plotly.express as px
import plotly.graph_objects as go
import altair as alt
#for Logo plotting
from PIL import Image
#for Folium Map Creation
from typing import Dict, List, Optional
import folium
from streamlit_folium import st_folium
from branca.element import Figure
from precipitation_function import lat_long_type
#disabling warnings
import warnings
warnings.filterwarnings("ignore")
#For parallel processing
from pandarallel import pandarallel
pandarallel.initialize(progress_bar=True)
fig = Figure(width = 550,height = 350)
#function for calculating annual average
@st.cache
def annual_avg(df,year_lst):
annual_avg_df_lst = list()
for i in year_lst:
d = df.get_group((i))
d['Annual avg'] = (d['daily_avg'].sum())/len(d)
annual_avg_df_lst.append(d)
return annual_avg_df_lst
#function for splitting the date column values into year, month and day
def df_date_split(df,lat_long_list):
df_date_list = list()
for i in lat_long_list:
grouped_df = df.get_group(i)
grouped_df[['Year','Month','Day']] = grouped_df['date'].str.split('-',expand = True)
df_date_list.append(grouped_df)
date_split_df = pd.concat(df_date_list)
return date_split_df
@st.cache
#function for creating 2 separate columns one for country code with 'et' values and 2nd with lat long concated values
def lat_long_process(df):
df['lat_long'] = df.loc[:,'lat'].astype(str)+','+df.loc[:,'long'].astype(str)
df.drop_duplicates(inplace = True)
return df
@st.cache
#Creating a separate dataframe for lat long values and returning a list of lat_long values
def lat_long_list_creation(df):
lat_long_df = df[['lat','long']]
lat_long_df['lat_long'] = lat_long_df.loc[:,'lat'].astype(str)+','+lat_long_df.loc[:,'long'].astype(str)
lat_long_df.drop_duplicates(inplace=True)
lat_long_list = lat_long_df['lat_long']
return lat_long_list
#function for grouping the data on lat long and returning only the et lat long
def group_df(df,lat_long_lst):
in_names = df.groupby(df['lat_long'])
temperaturedf_new = list()
for i in lat_long_lst:
df1 = in_names.get_group(i)
temperaturedf_new.append(df1)
result = pd.concat(temperaturedf_new)
return result
#function for calculating daily average
def daily_avg(x,y):
return (x+y)/2
@st.cache
#creating avg dataframe
def annual_avg_plot(annual_avg_df,lat_long_option,lat_long_list):
annual_avg_df = annual_avg_df.groupby('lat_long')
annual_avg_df = df_date_split(annual_avg_df,lat_long_list)
annual_avg_df = annual_avg_df.groupby('lat_long')
annual_avg_df = annual_avg_df.get_group(lat_long_option)
#returns the list of unique year values
year_lst = annual_avg_df['Year'].unique()
annual_avg_dataframe = annual_avg_df.groupby('Year')
annual_avg_result = annual_avg(annual_avg_dataframe,year_lst)
annual_average = pd.concat(annual_avg_result,axis = 0)
return annual_average
#creating average temp plotly chart
def avg_temp_plot(annual_temp,lat_long_val):
#CODE FOR PLOTTING ANNUAL AVERAGE TEMPERATURE
fig_avg = px.line(annual_temp, x= 'Year',y='Annual avg')
fig_avg.update_layout(
yaxis = dict(tickfont = dict(size=15)),
xaxis = dict(tickfont = dict(size=15)),
plot_bgcolor = 'rgba(0,0,0,0)')
fig_avg.update_traces(line_color ='dimgray')
fig_avg.update_xaxes(gridcolor='whitesmoke')
fig_avg.update_yaxes(gridcolor = 'whitesmoke')
fig_avg.update_yaxes(title = 'Annual Average Temperature (C)')
# fig_avg.update_layout(title = "Annual Average Temperature: "+str(lat_long_val))
return fig_avg
@st.cache
def annual_min_plot(Annual_temp_min,option_annual_min_temp,lat_long_list):
Annual_temp_min = Annual_temp_min.groupby('lat_long')
Annual_temp_min = df_date_split(Annual_temp_min,lat_long_list)
Annual_temp_min = Annual_temp_min.groupby(['lat_long','Year'])[['tmin']].min()
Annual_temp_min.rename(columns = {'tmin':'Yearly_minimum_temp'},inplace = True)
Annual_temp_min.reset_index(inplace = True)
Annual_temp_min = Annual_temp_min.groupby('lat_long')
df2 = Annual_temp_min.get_group(option_annual_min_temp)
return df2
@st.cache
def annual_max_plot(Annual_temp,option_annual_temp,lat_long_list):
Annual_temp = Annual_temp.groupby('lat_long')
Annual_temp = df_date_split(Annual_temp,lat_long_list)
Annual_temp = Annual_temp.groupby(['lat_long','Year'])[['tmax']].max()
Annual_temp.rename(columns = {'tmax':'Yearly_maximum_temp'},inplace = True)
Annual_temp.reset_index(inplace = True)
Annual_temp = Annual_temp.groupby('lat_long')
df1 = Annual_temp.get_group(option_annual_temp)
return df1
@st.cache
def daily_avg_calc(result,option,start,end):
grouped_temperature_df = result.groupby('lat_long')
data_frame = grouped_temperature_df.get_group(option)
data_frame.set_index('date',inplace = True)
data_frame_start_end = data_frame.loc[str(start):str(end)]
data_frame_start_end = data_frame_start_end.reset_index()
return data_frame_start_end
def daily_avg_plot(data_frame_start_end,lat_long_val):
#Plotting the line chart of the daily average
fig = px.line(data_frame_start_end, x = 'date',y='daily_avg',title = 'Daily Average Temperature')
fig.update_traces(line_color = 'blue')
fig.update_xaxes(title_text = 'Year',gridcolor = 'whitesmoke')
fig.update_yaxes(ticklabelposition="inside top", title= 'Daily Average Temperature (C)',gridcolor = 'whitesmoke')
fig.update_layout(margin = dict(l=25,r=25,t=25,b=25))
fig.update_layout(plot_bgcolor = 'rgba(0,0,0,0)')
# fig.update_layout(title = "Daily Average Temperature: "+str(lat_long_val))
return fig
@st.cache
def monthly_mean_calc(temperature_monthly_df,lat_long_list):
#monthly mean calculation
temperature_monthly_df = temperature_monthly_df.groupby('lat_long')
date_split_df = df_date_split(temperature_monthly_df,lat_long_list)
monthly_avg_temp = date_split_df.groupby(['lat_long','Year','Month'])[['daily_avg']].mean()
monthly_avg_temp.rename(columns = {'daily_avg':'Monthly mean temperature'},inplace = True)
return monthly_avg_temp
@st.cache(ttl=24*60*60)
def selecting_mean(monthly_avg_temp,option_mean,start_year,end_year):
monthly_avg_temp = monthly_avg_temp.reset_index().set_index('Year').groupby('lat_long')
grouped_monthly_mean = monthly_avg_temp.get_group(option_mean)
df = grouped_monthly_mean.loc[start_year:end_year]
df = df.reset_index()
return df
def plot_mean_data(df,lat_long_val):
title_text = "Monthly Mean Temperature: "+str(lat_long_val)
highlight = alt.selection(
type='single', on='mouseover', fields=['Year'], nearest=True)
base = alt.Chart(df,title = title_text).encode(
x = alt.X('Month:Q',scale = alt.Scale(domain=[1,12]),axis=alt.Axis(tickMinStep=1)),
y = alt.Y('Monthly mean temperature:Q',scale = alt.Scale(domain =[int(df['Monthly mean temperature'].min()),int(df['Monthly mean temperature'].max())])),
color = alt.Color('Year:O',scale = alt.Scale(scheme = 'magma'))
)
points = base.mark_circle().encode(
opacity=alt.value(0),
tooltip=[
alt.Tooltip('Year:O', title='Year'),
alt.Tooltip('Month:Q', title='Month'),
alt.Tooltip('Monthly mean temperature:Q', title='Mean temp')
]).add_selection(highlight)
lines = base.mark_line().encode(
size=alt.condition(~highlight, alt.value(1), alt.value(3)))
mean_chart = (points + lines).properties(width=1000, height=450).interactive()
return mean_chart
def max_temp_plot(df_max,lat_long_val):
fig_max = px.line(df_max,x = 'Year',y='Yearly_maximum_temp')
fig_max.update_traces(line_color = 'maroon')
fig_max.update_layout(
yaxis = dict(tickfont = dict(size=15)),
xaxis = dict(tickfont = dict(size=15)),
plot_bgcolor = 'rgba(0,0,0,0)')
fig_max.update_xaxes(gridcolor='whitesmoke')
fig_max.update_yaxes(gridcolor = 'whitesmoke')
fig_max.update_yaxes(title = "Annual Maximum Temperature (C)")
# fig_max.update_layout(title = "Yearly Maximum Temperature: "+str(lat_long_val))
return fig_max
def min_temp_plot(df_min,lat_long_val):
fig_min = px.line(df_min, x= 'Year',y = 'Yearly_minimum_temp')
fig_min.update_traces(line_color ='blue')
fig_min.update_layout(
yaxis = dict(tickfont = dict(size=15)),
xaxis = dict(tickfont = dict(size=15)),
plot_bgcolor = 'rgba(0,0,0,0)')
fig_min.update_xaxes(gridcolor='whitesmoke')
fig_min.update_yaxes(gridcolor = 'whitesmoke')
fig_min.update_yaxes(title = "Annual Minimum Temperature (C)")
# fig_min.update_layout(title = "Yearly Minimum Temperature: "+str(lat_long_val))
return fig_min
#code for downloading Data as a CSV File
@st.cache
def convert_df(df):
return df.to_csv().encode('utf-8')
# a = st.sidebar.empty()
#result dataframe contains the daily average value as well.
#Function for creating folium map and returning the latitude and Longitude of the clicked location
def map_creation(lat,long,clicked_lat,clicked_long):
with st.sidebar:
m = folium.Map(location = [9.14,40],zoom_start =7)
fig.add_child(m)
tile = folium.TileLayer(
tiles = 'https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}',
attr = 'Esri',
name = 'Esri Satellite',
overlay = False,
control = True).add_to(m)
folium.TileLayer('Stamen Terrain').add_to(m)
folium.TileLayer('Stamen Water Color').add_to(m)
folium.LayerControl().add_to(m)
if (clicked_lat == 0) and (clicked_long == 0):
folium.Marker([lat,long]).add_to(m)
else:
folium.Marker([lat,long]).add_to(m)
folium.Marker([clicked_lat,clicked_long]).add_to(m)
st_data = st_folium(m,key = 'map_fig_1')
return st_data
#df is the initial df that contains only et data
def search_func(latitude,longitude,lt_lng_lst,df):
df['lat_radian'],df['long_radian'] = np.radians(df['lat']),np.radians(df['long'])
df['dLON'] = df['long_radian'] - math.radians(longitude)
df['dLAT'] = df['lat_radian'] - math.radians(latitude)
df['distance'] = 6371 * 2 * np.arcsin(np.sqrt(np.sin(df['dLAT']/2)**2 + math.cos(math.radians(longitude)) * np.cos(df['lat_radian']) * np.sin(df['dLON']/2)**2))
a = df['distance'].idxmin()
nearest_neighbor = df._get_value(a,'lat_long')
nearest_neighbor = lat_long_type(nearest_neighbor)
# st.write("**Nearest Latitude and Longitude is :**",nearest_neighbor)
return nearest_neighbor
|