File size: 8,649 Bytes
00ac9b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import pandas as pd
import numpy as np
import streamlit as st



#imports for finding the nearest lat long using haversine distance

#visualization libraries to visualize different plots
import plotly.express as px
import plotly.graph_objects as go
import altair as alt
import io

#for Logo plotting
from PIL import Image

#disabling warnings
import warnings
warnings.filterwarnings("ignore")

#For parallel processing
from pandarallel import pandarallel
pandarallel.initialize(progress_bar=True)

from google.oauth2 import service_account
from google.cloud import storage

# Create API client.
# credentials = service_account.Credentials.from_service_account_info(
#     st.secrets["gcp_service_account"]
# )
# client = storage.Client(credentials=credentials)
#
# @st.cache(allow_output_mutation = True)
# def read_file(bucket_name, file_path):
#     bucket = client.bucket(bucket_name)
#     data = bucket.blob(file_path).download_as_bytes()
#     df = pd.read_csv(io.BytesIO(data),compression='zip')
#     return df




@st.cache
def date_split(df):
    df[['Year','Month','Day']] = df['date'].str.split('-',expand = True)
    return df


@st.cache(allow_output_mutation = True)
def lat_long_process_precp(df):
    df['lat_long'] = df['lat'].astype(str)+','+df['long'].astype(str)
    return df



@st.cache
def drop_dup_funct(x):
    x.drop_duplicates(inplace = True)
    return x

@st.cache(allow_output_mutation = True)
def concat_func(x,y,a,b):
    z = pd.concat([x,y,a,b],ignore_index = True)
    return z

@st.cache
def lat_long_type(nn_value):
    if isinstance(nn_value,str):
        return nn_value
    else:
        return nn_value.item((0))

@st.cache
def cumulative(df,start,end):
    df1 = df.groupby(['Year','Month'])['precip'].sum()
    df1 = df1.reset_index()
    df1 = df1.set_index('Year')
    df1 = df1.loc[str(start):str(end)]
    return df1

@st.cache
def cumulative_plot(df):
    fig  = px.line(df, y='precip',title = 'Monthly Cumulative Precipitation')
    fig.update_traces(line_color = 'blue')
    fig.update_xaxes(title_text = 'Year',gridcolor = 'whitesmoke')
    fig.update_yaxes(ticklabelposition="inside top", title= 'Monthly Cumulative Precipitation in mm',gridcolor = 'whitesmoke')
    fig.update_layout(margin = dict(l=25,r=25,t=25,b=25))
    fig.update_layout(plot_bgcolor = 'rgba(0,0,0,0)')
    fig.update_layout(title = "Monthly Cumulative Precipitation")
    return fig


@st.cache(allow_output_mutation=True)
def daily_precp_data(precipitation_temp,start,end,option):
    df_daily = precipitation_temp.get_group(option)
    df_daily.set_index('date',inplace = True)
    # df_2 = df_daily.loc[str(start):str(end)]
    # df_3=df_2.reset_index()
    return df_daily

@st.cache
def daily_precp_plot(df):
    fig  = px.line(df,y='precip',title = 'Daily Precipitation')
    fig.update_traces(line_color = 'blue')
    fig.update_xaxes(title_text = 'Year',gridcolor = 'whitesmoke')
    fig.update_yaxes(ticklabelposition="inside top", title= 'Daily Precipitation in mm',gridcolor = 'whitesmoke')
    fig.update_layout(margin = dict(l=25,r=25,t=25,b=25))
    fig.update_layout(plot_bgcolor = 'rgba(0,0,0,0)')
    fig.update_layout(title = "Daily Precipitation")
    return fig


def start_end_date_ui(start,end,key1,key2):
    st.markdown('**Enter Start Date**')
    start = st.date_input("",value = start,key = key1)
    if start < pd.to_datetime('2001/01/01'):
        st.write('Start date should not be less than 2001/01/01')

    st.markdown('**Enter End Date**')
    end = st.date_input("",value = end, key = key2)
    if end > pd.to_datetime('2019/12/31'):
        st.write('End date should not be greater than 2019/12/31')

    return start,end


def lat_long_ui(key1,key2):
    st.markdown('**Enter the latitude**')
    latitude_input = st.text_input('','12.55',key = key1)
    st.markdown('**Enter the longitude**')
    longitude_input = st.text_input('','42.45',key = key2)
    return latitude_input,longitude_input


def year_selection_ui(key1,key2):
    st.markdown('**Select the Start Year**')
    start_year = st.selectbox('',
                              ('2001','2002','2003','2004','2005','2006','2007','2008','2009',
                              '2010','2011','2012','2013','2014','2015','2016','2017','2018','2019'),key = key1)

    st.markdown('**Select the End Year**')
    end_year = st.selectbox('',
                              ('2001','2002','2003','2004','2005','2006','2007','2008','2009',
                              '2010','2011','2012','2013','2014','2015','2016','2017','2018','2019'),key = key2)

    return start_year,end_year

@st.cache(allow_output_mutation=True)
def monthly_mean_plot(df):
    title_text = "Monthly Mean Precipitation"
    highlight = alt.selection(
    type='single', on='mouseover', fields=['Year'], nearest=True)
    base = alt.Chart(df,title = title_text).encode(
    x = alt.X('Month:Q',scale = alt.Scale(domain=[1,12]),axis=alt.Axis(tickMinStep=1)),
    y = alt.Y('precip:Q',scale = alt.Scale(domain=[df['precip'].min(),df['precip'].max()])),
    color = alt.Color('Year:O',scale = alt.Scale(scheme = 'magma'))
    )
    points = base.mark_circle().encode(
    opacity=alt.value(0),
    tooltip=[
        alt.Tooltip('Year:O', title='Year'),
        alt.Tooltip('Month:Q', title='Month'),
        alt.Tooltip('precip:Q', title='Monthly Mean Precipitation')
    ]).add_selection(highlight)

    lines = base.mark_line().encode(
    size=alt.condition(~highlight, alt.value(1), alt.value(3)))

    mean_chart = (points + lines).properties(width=1000, height=400).interactive()
    return mean_chart

@st.cache
def annual_max_precip_plot(df):
    fig_max  = px.line(df, x = 'Year',y='precip',title = 'Annual Maximum Precipitation')
    fig_max.update_traces(line_color = 'maroon')
    fig_max.update_xaxes(title_text = 'Year',gridcolor = 'whitesmoke')
    fig_max.update_yaxes(ticklabelposition="inside top", title= 'Annual Maximum Precipitation in mm',gridcolor = 'whitesmoke')
    fig_max.update_layout(margin = dict(l=25,r=25,t=25,b=25))
    fig_max.update_layout(plot_bgcolor = 'rgba(0,0,0,0)')
    fig_max.update_layout(title = "Annual Maximum Precipitation")
    return fig_max


def annual_min_precip_plot(df):
    fig_min  = px.line(df, x = 'Year',y='precip',title = 'Annual Minimum Precipitation')
    fig_min.update_traces(line_color = 'blue')
    fig_min.update_xaxes(title_text = 'Year',gridcolor = 'whitesmoke')
    fig_min.update_yaxes(ticklabelposition="inside top", title= 'Annual Minimum Precipitation in mm',gridcolor = 'whitesmoke')
    fig_min.update_layout(margin = dict(l=25,r=25,t=25,b=25))
    fig_min.update_layout(plot_bgcolor = 'rgba(0,0,0,0)')
    fig_min.update_layout(title = "Annual Minimum Precipitation")
    return fig_min

def annual_avg_plot(df):
    fig_avg  = px.line(df, x = 'Year',y='precip',title = 'Annual Average Precipitation')
    fig_avg.update_traces(line_color = 'dimgray')
    fig_avg.update_xaxes(title_text = 'Year',gridcolor = 'whitesmoke')
    fig_avg.update_yaxes(ticklabelposition="inside top", title= 'Annual Average Precipitation in mm',gridcolor = 'whitesmoke')
    fig_avg.update_layout(margin = dict(l=25,r=25,t=25,b=25))
    fig_avg.update_layout(plot_bgcolor = 'rgba(0,0,0,0)')
    fig_avg.update_layout(title = "Annual Average Precipitation")
    return fig_avg


@st.cache
def max_precip(precipitation_temp,option,start_year,end_year):
    maximum_precip_df = precipitation_temp.get_group(option)
    maximum_precip_df = date_split(maximum_precip_df)
    Annual_max_precip = maximum_precip_df.groupby('Year')['precip'].max()
    Annual_max_precip = Annual_max_precip.loc[str(start_year):str(end_year)]
    Annual_max_precip = Annual_max_precip.reset_index()
    return Annual_max_precip

@st.cache
def min_precip(precipitation_temp,option,start_year,end_year):
    minimum_precip_df = precipitation_temp.get_group(option)
    minimum_precip_df = date_split(minimum_precip_df)
    minimum_precip_df = minimum_precip_df.where(minimum_precip_df['precip']>0)
    minimum_precip_df = minimum_precip_df.groupby('Year')['precip'].min()
    minimum_precip_df = minimum_precip_df.loc[str(start_year):str(end_year)]
    minimum_precip_df = minimum_precip_df.reset_index()
    return minimum_precip_df

@st.cache
def avg_precip(precipitation_temp,option,start_year,end_year):
    avg_precip_df = precipitation_temp.get_group(option)
    avg_precip_df = date_split(avg_precip_df)
    avg_precip_df = avg_precip_df.groupby('Year')['precip'].mean()
    avg_precip_df_s_e = avg_precip_df.loc[str(start_year):str(end_year)]
    avg_precip_df_s_e = avg_precip_df_s_e.reset_index()
    return avg_precip_df_s_e