File size: 10,099 Bytes
aea2f58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from torchvision.datasets.utils import download_url
from ldm.util import instantiate_from_config
import torch
import os
# todo ?
from google.colab import files
from IPython.display import Image as ipyimg
import ipywidgets as widgets
from PIL import Image
from numpy import asarray
from einops import rearrange, repeat
import torch, torchvision
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import ismap
import time
from omegaconf import OmegaConf


def download_models(mode):

    if mode == "superresolution":
        # this is the small bsr light model
        url_conf = 'https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1'
        url_ckpt = 'https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1'

        path_conf = 'logs/diffusion/superresolution_bsr/configs/project.yaml'
        path_ckpt = 'logs/diffusion/superresolution_bsr/checkpoints/last.ckpt'

        download_url(url_conf, path_conf)
        download_url(url_ckpt, path_ckpt)

        path_conf = path_conf + '/?dl=1' # fix it
        path_ckpt = path_ckpt + '/?dl=1' # fix it
        return path_conf, path_ckpt

    else:
        raise NotImplementedError


def load_model_from_config(config, ckpt):
    print(f"Loading model from {ckpt}")
    pl_sd = torch.load(ckpt, map_location="cpu")
    global_step = pl_sd["global_step"]
    sd = pl_sd["state_dict"]
    model = instantiate_from_config(config.model)
    m, u = model.load_state_dict(sd, strict=False)
    model.cuda()
    model.eval()
    return {"model": model}, global_step


def get_model(mode):
    path_conf, path_ckpt = download_models(mode)
    config = OmegaConf.load(path_conf)
    model, step = load_model_from_config(config, path_ckpt)
    return model


def get_custom_cond(mode):
    dest = "data/example_conditioning"

    if mode == "superresolution":
        uploaded_img = files.upload()
        filename = next(iter(uploaded_img))
        name, filetype = filename.split(".") # todo assumes just one dot in name !
        os.rename(f"{filename}", f"{dest}/{mode}/custom_{name}.{filetype}")

    elif mode == "text_conditional":
        w = widgets.Text(value='A cake with cream!', disabled=True)
        display(w)

        with open(f"{dest}/{mode}/custom_{w.value[:20]}.txt", 'w') as f:
            f.write(w.value)

    elif mode == "class_conditional":
        w = widgets.IntSlider(min=0, max=1000)
        display(w)
        with open(f"{dest}/{mode}/custom.txt", 'w') as f:
            f.write(w.value)

    else:
        raise NotImplementedError(f"cond not implemented for mode{mode}")


def get_cond_options(mode):
    path = "data/example_conditioning"
    path = os.path.join(path, mode)
    onlyfiles = [f for f in sorted(os.listdir(path))]
    return path, onlyfiles


def select_cond_path(mode):
    path = "data/example_conditioning"  # todo
    path = os.path.join(path, mode)
    onlyfiles = [f for f in sorted(os.listdir(path))]

    selected = widgets.RadioButtons(
        options=onlyfiles,
        description='Select conditioning:',
        disabled=False
    )
    display(selected)
    selected_path = os.path.join(path, selected.value)
    return selected_path


def get_cond(mode, selected_path):
    example = dict()
    if mode == "superresolution":
        up_f = 4
        visualize_cond_img(selected_path)

        c = Image.open(selected_path)
        c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0)
        c_up = torchvision.transforms.functional.resize(c, size=[up_f * c.shape[2], up_f * c.shape[3]], antialias=True)
        c_up = rearrange(c_up, '1 c h w -> 1 h w c')
        c = rearrange(c, '1 c h w -> 1 h w c')
        c = 2. * c - 1.

        c = c.to(torch.device("cuda"))
        example["LR_image"] = c
        example["image"] = c_up

    return example


def visualize_cond_img(path):
    display(ipyimg(filename=path))


def run(model, selected_path, task, custom_steps, resize_enabled=False, classifier_ckpt=None, global_step=None):

    example = get_cond(task, selected_path)

    save_intermediate_vid = False
    n_runs = 1
    masked = False
    guider = None
    ckwargs = None
    mode = 'ddim'
    ddim_use_x0_pred = False
    temperature = 1.
    eta = 1.
    make_progrow = True
    custom_shape = None

    height, width = example["image"].shape[1:3]
    split_input = height >= 128 and width >= 128

    if split_input:
        ks = 128
        stride = 64
        vqf = 4  #
        model.split_input_params = {"ks": (ks, ks), "stride": (stride, stride),
                                    "vqf": vqf,
                                    "patch_distributed_vq": True,
                                    "tie_braker": False,
                                    "clip_max_weight": 0.5,
                                    "clip_min_weight": 0.01,
                                    "clip_max_tie_weight": 0.5,
                                    "clip_min_tie_weight": 0.01}
    else:
        if hasattr(model, "split_input_params"):
            delattr(model, "split_input_params")

    invert_mask = False

    x_T = None
    for n in range(n_runs):
        if custom_shape is not None:
            x_T = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device)
            x_T = repeat(x_T, '1 c h w -> b c h w', b=custom_shape[0])

        logs = make_convolutional_sample(example, model,
                                         mode=mode, custom_steps=custom_steps,
                                         eta=eta, swap_mode=False , masked=masked,
                                         invert_mask=invert_mask, quantize_x0=False,
                                         custom_schedule=None, decode_interval=10,
                                         resize_enabled=resize_enabled, custom_shape=custom_shape,
                                         temperature=temperature, noise_dropout=0.,
                                         corrector=guider, corrector_kwargs=ckwargs, x_T=x_T, save_intermediate_vid=save_intermediate_vid,
                                         make_progrow=make_progrow,ddim_use_x0_pred=ddim_use_x0_pred
                                         )
    return logs


@torch.no_grad()
def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_sequence=None,
                    mask=None, x0=None, quantize_x0=False, img_callback=None,
                    temperature=1., noise_dropout=0., score_corrector=None,
                    corrector_kwargs=None, x_T=None, log_every_t=None
                    ):

    ddim = DDIMSampler(model)
    bs = shape[0]  # dont know where this comes from but wayne
    shape = shape[1:]  # cut batch dim
    print(f"Sampling with eta = {eta}; steps: {steps}")
    samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, conditioning=cond, callback=callback,
                                         normals_sequence=normals_sequence, quantize_x0=quantize_x0, eta=eta,
                                         mask=mask, x0=x0, temperature=temperature, verbose=False,
                                         score_corrector=score_corrector,
                                         corrector_kwargs=corrector_kwargs, x_T=x_T)

    return samples, intermediates


@torch.no_grad()
def make_convolutional_sample(batch, model, mode="vanilla", custom_steps=None, eta=1.0, swap_mode=False, masked=False,
                              invert_mask=True, quantize_x0=False, custom_schedule=None, decode_interval=1000,
                              resize_enabled=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None,
                              corrector_kwargs=None, x_T=None, save_intermediate_vid=False, make_progrow=True,ddim_use_x0_pred=False):
    log = dict()

    z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key,
                                        return_first_stage_outputs=True,
                                        force_c_encode=not (hasattr(model, 'split_input_params')
                                                            and model.cond_stage_key == 'coordinates_bbox'),
                                        return_original_cond=True)

    log_every_t = 1 if save_intermediate_vid else None

    if custom_shape is not None:
        z = torch.randn(custom_shape)
        print(f"Generating {custom_shape[0]} samples of shape {custom_shape[1:]}")

    z0 = None

    log["input"] = x
    log["reconstruction"] = xrec

    if ismap(xc):
        log["original_conditioning"] = model.to_rgb(xc)
        if hasattr(model, 'cond_stage_key'):
            log[model.cond_stage_key] = model.to_rgb(xc)

    else:
        log["original_conditioning"] = xc if xc is not None else torch.zeros_like(x)
        if model.cond_stage_model:
            log[model.cond_stage_key] = xc if xc is not None else torch.zeros_like(x)
            if model.cond_stage_key =='class_label':
                log[model.cond_stage_key] = xc[model.cond_stage_key]

    with model.ema_scope("Plotting"):
        t0 = time.time()
        img_cb = None

        sample, intermediates = convsample_ddim(model, c, steps=custom_steps, shape=z.shape,
                                                eta=eta,
                                                quantize_x0=quantize_x0, img_callback=img_cb, mask=None, x0=z0,
                                                temperature=temperature, noise_dropout=noise_dropout,
                                                score_corrector=corrector, corrector_kwargs=corrector_kwargs,
                                                x_T=x_T, log_every_t=log_every_t)
        t1 = time.time()

        if ddim_use_x0_pred:
            sample = intermediates['pred_x0'][-1]

    x_sample = model.decode_first_stage(sample)

    try:
        x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True)
        log["sample_noquant"] = x_sample_noquant
        log["sample_diff"] = torch.abs(x_sample_noquant - x_sample)
    except:
        pass

    log["sample"] = x_sample
    log["time"] = t1 - t0

    return log