File size: 10,706 Bytes
2afcb7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2137fd6
2afcb7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926ff6c
2afcb7e
 
 
 
 
 
 
 
 
 
 
 
926ff6c
2afcb7e
 
 
 
 
 
 
 
 
 
 
 
 
926ff6c
2137fd6
2afcb7e
 
 
2137fd6
 
2afcb7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926ff6c
2afcb7e
e351ce6
2afcb7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926ff6c
2afcb7e
 
 
 
 
 
 
926ff6c
2afcb7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
from __future__ import annotations

import math
import random
import sys
from argparse import ArgumentParser

import einops
import gradio as gr
import k_diffusion as K
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from omegaconf import OmegaConf
from PIL import Image, ImageOps
from torch import autocast
from huggingface_hub import hf_hub_download

sys.path.append("./stable_diffusion")

from stable_diffusion.ldm.util import instantiate_from_config


help_text = """
If you're not getting what you want, there may be a few reasons:
1. Is the image not changing enough? Your Image CFG weight may be too high. This value dictates how similar the output should be to the input. It's possible your edit requires larger changes from the original image, and your Image CFG weight isn't allowing that. Alternatively, your Text CFG weight may be too low. This value dictates how much to listen to the text instruction. The default Image CFG of 1.5 and Text CFG of 7.5 are a good starting point, but aren't necessarily optimal for each edit. Try:
    * Decreasing the Image CFG weight, or
    * Incerasing the Text CFG weight, or
2. Conversely, is the image changing too much, such that the details in the original image aren't preserved? Try:
    * Increasing the Image CFG weight, or
    * Decreasing the Text CFG weight
3. Try generating results with different random seeds by setting "Randomize Seed" and running generation multiple times. You can also try setting "Randomize CFG" to sample new Text CFG and Image CFG values each time.
4. Rephrasing the instruction sometimes improves results (e.g., "turn him into a dog" vs. "make him a dog" vs. "as a dog").
5. Increasing the number of steps sometimes improves results.
6. Do faces look weird? The Stable Diffusion autoencoder has a hard time with faces that are small in the image. Try:
    * Cropping the image so the face takes up a larger portion of the frame.
"""


example_instructions = [
    "Make it a picasso painting",
    "as if it were by modigliani",
    "convert to a bronze statue",
    "Turn it into an anime.",
    "have it look like a graphic novel",
    "make him gain weight",
    "what would he look like bald?",
    "Have him smile",
    "Put him in a cocktail party.",
    "move him at the beach.",
    "add dramatic lighting",
    "Convert to black and white",
    "What if it were snowing?",
    "Give him a leather jacket",
    "Turn him into a cyborg!",
    "make him wear a beanie",
]


class CFGDenoiser(nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model

    def forward(self, z, sigma, cond, uncond, text_cfg_scale, image_cfg_scale):
        cfg_z = einops.repeat(z, "1 ... -> n ...", n=3)
        cfg_sigma = einops.repeat(sigma, "1 ... -> n ...", n=3)
        cfg_cond = {
            "c_crossattn": [torch.cat([cond["c_crossattn"][0], uncond["c_crossattn"][0], uncond["c_crossattn"][0]])],
            "c_concat": [torch.cat([cond["c_concat"][0], cond["c_concat"][0], uncond["c_concat"][0]])],
        }
        out_cond, out_img_cond, out_uncond = self.inner_model(cfg_z, cfg_sigma, cond=cfg_cond).chunk(3)
        return out_uncond + text_cfg_scale * (out_cond - out_img_cond) + image_cfg_scale * (out_img_cond - out_uncond)


def load_model_from_config(config, ckpt, vae_ckpt=None, verbose=False):
    print(f"Loading model from {ckpt}")
    pl_sd = torch.load(ckpt, map_location="cpu")
    if "global_step" in pl_sd:
        print(f"Global Step: {pl_sd['global_step']}")
    sd = pl_sd["state_dict"]
    if vae_ckpt is not None:
        print(f"Loading VAE from {vae_ckpt}")
        vae_sd = torch.load(vae_ckpt, map_location="cpu")["state_dict"]
        sd = {
            k: vae_sd[k[len("first_stage_model.") :]] if k.startswith("first_stage_model.") else v
            for k, v in sd.items()
        }
    model = instantiate_from_config(config.model)
    m, u = model.load_state_dict(sd, strict=False)
    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)
    return model


def main():
    parser = ArgumentParser()
    parser.add_argument("--resolution", default=512, type=int)
    parser.add_argument("--config", default="configs/generate.yaml", type=str)
    parser.add_argument("--ckpt", default="instruct-pix2pix-00-22000.ckpt", type=str)
    parser.add_argument("--vae-ckpt", default=None, type=str)
    args = parser.parse_args()

    args.ckpt = hf_hub_download(repo_id="diffusers/pix2pix-sd", filename="instruct-pix2pix-00-22000.ckpt")

    config = OmegaConf.load(args.config)
    model = load_model_from_config(config, args.ckpt, args.vae_ckpt)
    model.eval().cuda()
    model_wrap = K.external.CompVisDenoiser(model)
    model_wrap_cfg = CFGDenoiser(model_wrap)
    null_token = model.get_learned_conditioning([""])
    example_image = Image.open("imgs/example.jpg").convert("RGB")

    def load_example(
        steps: int,
        randomize_seed: bool,
        seed: int,
        randomize_cfg: bool,
        text_cfg_scale: float,
        image_cfg_scale: float,
    ):
        example_instruction = random.choice(example_instructions)
        return [example_image, example_instruction] + generate(
            example_image,
            example_instruction,
            steps,
            randomize_seed,
            seed,
            randomize_cfg,
            text_cfg_scale,
            image_cfg_scale,
        )

    def generate(
        input_image: Image.Image,
        instruction: str,
        steps: int,
        randomize_seed: bool,
        seed: int,
        randomize_cfg: bool,
        text_cfg_scale: float,
        image_cfg_scale: float,
    ):
        seed = random.randint(0, 100000) if randomize_seed else seed
        text_cfg_scale = round(random.uniform(6.0, 9.0), ndigits=2) if randomize_cfg else text_cfg_scale
        image_cfg_scale = round(random.uniform(1.2, 1.8), ndigits=2) if randomize_cfg else image_cfg_scale

        width, height = input_image.size
        factor = args.resolution / max(width, height)
        factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
        width = int((width * factor) // 64) * 64
        height = int((height * factor) // 64) * 64
        input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)

        if instruction == "":
            return [input_image, seed]

        with torch.no_grad(), autocast("cuda"), model.ema_scope():
            cond = {}
            cond["c_crossattn"] = [model.get_learned_conditioning([instruction])]
            input_image = 2 * torch.tensor(np.array(input_image)).float() / 255 - 1
            input_image = rearrange(input_image, "h w c -> 1 c h w").to(model.device)
            cond["c_concat"] = [model.encode_first_stage(input_image).mode()]

            uncond = {}
            uncond["c_crossattn"] = [null_token]
            uncond["c_concat"] = [torch.zeros_like(cond["c_concat"][0])]

            sigmas = model_wrap.get_sigmas(steps)

            extra_args = {
                "cond": cond,
                "uncond": uncond,
                "text_cfg_scale": text_cfg_scale,
                "image_cfg_scale": image_cfg_scale,
            }
            torch.manual_seed(seed)
            z = torch.randn_like(cond["c_concat"][0]) * sigmas[0]
            z = K.sampling.sample_euler_ancestral(model_wrap_cfg, z, sigmas, extra_args=extra_args)
            x = model.decode_first_stage(z)
            x = torch.clamp((x + 1.0) / 2.0, min=0.0, max=1.0)
            x = 255.0 * rearrange(x, "1 c h w -> h w c")
            edited_image = Image.fromarray(x.type(torch.uint8).cpu().numpy())

            return [seed, text_cfg_scale, image_cfg_scale, edited_image]

    def reset():
        return [0, "Randomize Seed", 1371, "Fix CFG", 7.5, 1.5, None]

    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column(scale=1, min_width=100):
                generate_button = gr.Button("Generate")
            with gr.Column(scale=1, min_width=100):
                load_button = gr.Button("Load Example")
            with gr.Column(scale=1, min_width=100):
                reset_button = gr.Button("Reset")
            with gr.Column(scale=3):
                instruction = gr.Textbox(lines=1, label="Edit Instruction", interactive=True)

        with gr.Row():
            input_image = gr.Image(label="Input Image", type="pil", interactive=True)
            edited_image = gr.Image(label=f"Edited Image", type="pil", interactive=False)
            input_image.style(height=512, width=512)
            edited_image.style(height=512, width=512)

        with gr.Row():
            steps = gr.Number(value=100, precision=0, label="Steps", interactive=True)
            randomize_seed = gr.Radio(
                ["Fix Seed", "Randomize Seed"],
                value="Randomize Seed",
                type="index",
                show_label=False,
                interactive=True,
            )
            seed = gr.Number(value=1371, precision=0, label="Seed", interactive=True)
            randomize_cfg = gr.Radio(
                ["Fix CFG", "Randomize CFG"],
                value="Fix CFG",
                type="index",
                show_label=False,
                interactive=True,
            )
            text_cfg_scale = gr.Number(value=7.5, label=f"Text CFG", interactive=True)
            image_cfg_scale = gr.Number(value=1.5, label=f"Image CFG", interactive=True)

        gr.Markdown(help_text)

        load_button.click(
            fn=load_example,
            inputs=[
                steps,
                randomize_seed,
                seed,
                randomize_cfg,
                text_cfg_scale,
                image_cfg_scale,
            ],
            outputs=[input_image, instruction, seed, text_cfg_scale, image_cfg_scale, edited_image],
        )
        generate_button.click(
            fn=generate,
            inputs=[
                input_image,
                instruction,
                steps,
                randomize_seed,
                seed,
                randomize_cfg,
                text_cfg_scale,
                image_cfg_scale,
            ],
            outputs=[seed, text_cfg_scale, image_cfg_scale, edited_image],
        )
        reset_button.click(
            fn=reset,
            inputs=[],
            outputs=[steps, randomize_seed, seed, randomize_cfg, text_cfg_scale, image_cfg_scale, edited_image],
        )

    demo.queue(concurrency_count=1)
    demo.launch(share=True)


if __name__ == "__main__":
    main()