File size: 11,145 Bytes
2afcb7e
 
926ff6c
2afcb7e
 
 
 
 
 
 
 
 
 
 
 
926ff6c
 
 
 
 
2afcb7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926ff6c
2afcb7e
926ff6c
2afcb7e
 
 
926ff6c
2afcb7e
926ff6c
2afcb7e
 
926ff6c
 
 
 
 
 
 
 
 
 
 
 
2afcb7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926ff6c
 
 
2afcb7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926ff6c
2afcb7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
926ff6c
2afcb7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import argparse
import json
import sys
from pathlib import Path

import k_diffusion
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange, repeat
from omegaconf import OmegaConf
from PIL import Image
from pytorch_lightning import seed_everything
from tqdm import tqdm

sys.path.append("./")
sys.path.append("./stable_diffusion")

from ldm.modules.attention import CrossAttention
from ldm.util import instantiate_from_config
from metrics.clip_similarity import ClipSimilarity


################################################################################
# Modified K-diffusion Euler ancestral sampler with prompt-to-prompt.
# https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py


def append_dims(x, target_dims):
    """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
    dims_to_append = target_dims - x.ndim
    if dims_to_append < 0:
        raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
    return x[(...,) + (None,) * dims_to_append]


def to_d(x, sigma, denoised):
    """Converts a denoiser output to a Karras ODE derivative."""
    return (x - denoised) / append_dims(sigma, x.ndim)


def get_ancestral_step(sigma_from, sigma_to):
    """Calculates the noise level (sigma_down) to step down to and the amount
    of noise to add (sigma_up) when doing an ancestral sampling step."""
    sigma_up = min(sigma_to, (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5)
    sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
    return sigma_down, sigma_up


def sample_euler_ancestral(model, x, sigmas, prompt2prompt_threshold=0.0, **extra_args):
    """Ancestral sampling with Euler method steps."""
    s_in = x.new_ones([x.shape[0]])
    for i in range(len(sigmas) - 1):
        prompt_to_prompt = prompt2prompt_threshold > i / (len(sigmas) - 2)
        for m in model.modules():
            if isinstance(m, CrossAttention):
                m.prompt_to_prompt = prompt_to_prompt
        denoised = model(x, sigmas[i] * s_in, **extra_args)
        sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
        d = to_d(x, sigmas[i], denoised)
        # Euler method
        dt = sigma_down - sigmas[i]
        x = x + d * dt
        if sigmas[i + 1] > 0:
            # Make noise the same across all samples in batch.
            x = x + torch.randn_like(x[:1]) * sigma_up
    return x


################################################################################


def load_model_from_config(config, ckpt, vae_ckpt=None, verbose=False):
    print(f"Loading model from {ckpt}")
    pl_sd = torch.load(ckpt, map_location="cpu")
    if "global_step" in pl_sd:
        print(f"Global Step: {pl_sd['global_step']}")
    sd = pl_sd["state_dict"]
    if vae_ckpt is not None:
        print(f"Loading VAE from {vae_ckpt}")
        vae_sd = torch.load(vae_ckpt, map_location="cpu")["state_dict"]
        sd = {
            k: vae_sd[k[len("first_stage_model.") :]] if k.startswith("first_stage_model.") else v
            for k, v in sd.items()
        }
    model = instantiate_from_config(config.model)
    m, u = model.load_state_dict(sd, strict=False)
    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)
    return model


class CFGDenoiser(nn.Module):
    def __init__(self, model):
        super().__init__()
        self.inner_model = model

    def forward(self, x, sigma, uncond, cond, cfg_scale):
        x_in = torch.cat([x] * 2)
        sigma_in = torch.cat([sigma] * 2)
        cond_in = torch.cat([uncond, cond])
        uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
        return uncond + (cond - uncond) * cfg_scale


def to_pil(image: torch.Tensor) -> Image.Image:
    image = 255.0 * rearrange(image.cpu().numpy(), "c h w -> h w c")
    image = Image.fromarray(image.astype(np.uint8))
    return image


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--out_dir",
        type=str,
        required=True,
        help="Path to output dataset directory.",
    )
    parser.add_argument(
        "--prompts_file",
        type=str,
        required=True,
        help="Path to prompts .jsonl file.",
    )
    parser.add_argument(
        "--ckpt",
        type=str,
        default="stable_diffusion/models/ldm/stable-diffusion-v1/v1-5-pruned-emaonly.ckpt",
        help="Path to stable diffusion checkpoint.",
    )
    parser.add_argument(
        "--vae-ckpt",
        type=str,
        default="stable_diffusion/models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt",
        help="Path to vae checkpoint.",
    )
    parser.add_argument(
        "--steps",
        type=int,
        default=100,
        help="Number of sampling steps.",
    )
    parser.add_argument(
        "--n-samples",
        type=int,
        default=100,
        help="Number of samples to generate per prompt (before CLIP filtering).",
    )
    parser.add_argument(
        "--max-out-samples",
        type=int,
        default=4,
        help="Max number of output samples to save per prompt (after CLIP filtering).",
    )
    parser.add_argument(
        "--n-partitions",
        type=int,
        default=1,
        help="Number of total partitions.",
    )
    parser.add_argument(
        "--partition",
        type=int,
        default=0,
        help="Partition index.",
    )
    parser.add_argument(
        "--min-p2p",
        type=float,
        default=0.1,
        help="Min prompt2prompt threshold (portion of denoising for which to fix self attention maps).",
    )
    parser.add_argument(
        "--max-p2p",
        type=float,
        default=0.9,
        help="Max prompt2prompt threshold (portion of denoising for which to fix self attention maps).",
    )
    parser.add_argument(
        "--min-cfg",
        type=float,
        default=7.5,
        help="Min classifier free guidance scale.",
    )
    parser.add_argument(
        "--max-cfg",
        type=float,
        default=15,
        help="Max classifier free guidance scale.",
    )
    parser.add_argument(
        "--clip-threshold",
        type=float,
        default=0.2,
        help="CLIP threshold for text-image similarity of each image.",
    )
    parser.add_argument(
        "--clip-dir-threshold",
        type=float,
        default=0.2,
        help="Directional CLIP threshold for similarity of change between pairs of text and pairs of images.",
    )
    parser.add_argument(
        "--clip-img-threshold",
        type=float,
        default=0.7,
        help="CLIP threshold for image-image similarity.",
    )
    opt = parser.parse_args()

    global_seed = torch.randint(1 << 32, ()).item()
    print(f"Global seed: {global_seed}")
    seed_everything(global_seed)

    model = load_model_from_config(
        OmegaConf.load("stable_diffusion/configs/stable-diffusion/v1-inference.yaml"),
        ckpt=opt.ckpt,
        vae_ckpt=opt.vae_ckpt,
    )
    model.cuda().eval()
    model_wrap = k_diffusion.external.CompVisDenoiser(model)

    clip_similarity = ClipSimilarity().cuda()

    out_dir = Path(opt.out_dir)
    out_dir.mkdir(exist_ok=True, parents=True)

    with open(opt.prompts_file) as fp:
        prompts = [json.loads(line) for line in fp]

    print(f"Partition index {opt.partition} ({opt.partition + 1} / {opt.n_partitions})")
    prompts = np.array_split(list(enumerate(prompts)), opt.n_partitions)[opt.partition]

    with torch.no_grad(), torch.autocast("cuda"), model.ema_scope():
        uncond = model.get_learned_conditioning(2 * [""])
        sigmas = model_wrap.get_sigmas(opt.steps)

        for i, prompt in tqdm(prompts, desc="Prompts"):
            prompt_dir = out_dir.joinpath(f"{i:07d}")
            prompt_dir.mkdir(exist_ok=True)

            with open(prompt_dir.joinpath("prompt.json"), "w") as fp:
                json.dump(prompt, fp)

            cond = model.get_learned_conditioning([prompt["caption"], prompt["output"]])
            results = {}

            with tqdm(total=opt.n_samples, desc="Samples") as progress_bar:

                while len(results) < opt.n_samples:
                    seed = torch.randint(1 << 32, ()).item()
                    if seed in results:
                        continue
                    torch.manual_seed(seed)

                    x = torch.randn(1, 4, 512 // 8, 512 // 8, device="cuda") * sigmas[0]
                    x = repeat(x, "1 ... -> n ...", n=2)

                    model_wrap_cfg = CFGDenoiser(model_wrap)
                    p2p_threshold = opt.min_p2p + torch.rand(()).item() * (opt.max_p2p - opt.min_p2p)
                    cfg_scale = opt.min_cfg + torch.rand(()).item() * (opt.max_cfg - opt.min_cfg)
                    extra_args = {"cond": cond, "uncond": uncond, "cfg_scale": cfg_scale}
                    samples_ddim = sample_euler_ancestral(model_wrap_cfg, x, sigmas, p2p_threshold, **extra_args)
                    x_samples_ddim = model.decode_first_stage(samples_ddim)
                    x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)

                    x0 = x_samples_ddim[0]
                    x1 = x_samples_ddim[1]

                    clip_sim_0, clip_sim_1, clip_sim_dir, clip_sim_image = clip_similarity(
                        x0[None], x1[None], [prompt["caption"]], [prompt["output"]]
                    )

                    results[seed] = dict(
                        image_0=to_pil(x0),
                        image_1=to_pil(x1),
                        p2p_threshold=p2p_threshold,
                        cfg_scale=cfg_scale,
                        clip_sim_0=clip_sim_0[0].item(),
                        clip_sim_1=clip_sim_1[0].item(),
                        clip_sim_dir=clip_sim_dir[0].item(),
                        clip_sim_image=clip_sim_image[0].item(),
                    )

                    progress_bar.update()

            # CLIP filter to get best samples for each prompt.
            metadata = [
                (result["clip_sim_dir"], seed)
                for seed, result in results.items()
                if result["clip_sim_image"] >= opt.clip_img_threshold
                and result["clip_sim_dir"] >= opt.clip_dir_threshold
                and result["clip_sim_0"] >= opt.clip_threshold
                and result["clip_sim_1"] >= opt.clip_threshold
            ]
            metadata.sort(reverse=True)
            for _, seed in metadata[: opt.max_out_samples]:
                result = results[seed]
                image_0 = result.pop("image_0")
                image_1 = result.pop("image_1")
                image_0.save(prompt_dir.joinpath(f"{seed}_0.jpg"), quality=100)
                image_1.save(prompt_dir.joinpath(f"{seed}_1.jpg"), quality=100)
                with open(prompt_dir.joinpath(f"metadata.jsonl"), "a") as fp:
                    fp.write(f"{json.dumps(dict(seed=seed, **result))}\n")

    print("Done.")


if __name__ == "__main__":
    main()